
Universität des Saarlandes

Master's Thesis

A Hierarchical Bayesian Model

for Unsupervised Learning
of Script Knowledge

submitted in partial ful�llment of the requirements for the degree of
Master of Science in Language Science and Technology

Author:

Lea Frermann

Supervisors:

Dr. Ivan Titov

Prof. Dr. Manfred Pinkal

December 24, 2013

ii

Abstract

We present a hierarchical Bayesian model for unsupervised induc-
tion of knowledge from scripts. Scripts are abstract representations
of common everyday scenarios which consist of a temporally or-
dered, stereotypical sequence of events (Schank and Abelson, 1975;
Regneri et al., 2010). In recent years, a body of work on inducing
script knowledge automatically from data has emerged. We extend
this work by presenting a new, unsupervised approach which jointly
learns three the objectives of (1) equivalence classes of events, (2)
constraints on the temporal order of events, and (3) equivalence
classes of participants. We embed the three objectives in one uni�ed
framework, arguing that they provide strong cues for each other.

We formulate our model in the framework of Bayesian model-
ing. We provide the complete formulation of a hierarchical Bayesian
model for our problem, and derive an inference algorithm. We incor-
porate a statistical model of permutations, the Generalized Mallows
Model (GMM; (Fligner and Verducci, 1986)), for modeling ordering
constraints. We further include prior knowledge of semantic sim-
ilarity obtained from WordNet to guide the inference process and
leverage the problem of relatively small training data sets we have
available.

We present an evaluation for all three tasks, comparing our re-
sults to a system which learns the same three objectives using a
pipeline-based architecture, and evaluating the bene�t of di�erent
components in our model. We show that the GMM is a robust model
of event orderings in scripts. While we do not achieve state-of-the-
art performance on participant class learning, our model compares
favourably on event clustering and temporal ordering constraint in-
duction.

iii

iv

Declaration

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfs-
mittel verwendet habe.

Declaration

I hereby con�rm that the thesis presented here is my own work,
with all assistance acknowledged.

Saarbrücken, 13 March 2013
Signature

v

vi

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis Outline . 3

2 Related Work 5

2.1 Scripts . 5

2.2 Modeling Ordering . 8

2.3 Topic Models . 9

3 Technical Background 11

3.1 Generative Modeling . 11

3.2 Bayesian Inference . 12

3.2.1 Bayes' Rule . 12

3.2.2 Prior Knowledge . 13

3.3 The Generalized Mallows Model 16

3.4 The Logistic Normal Distribution 18

3.5 Markov Chain Monte Carlo . 19

3.5.1 The Gibbs Sampler . 20

3.5.2 The Slice Sampler . 21

4 A Hierarchical Bayesian Script Model 23

4.1 Problem Formulation . 23

4.2 Model Overview . 25

4.3 The Generative Process . 26

4.3.1 Generating Parameters from Prior Knowledge 29

4.4 Summary . 30

5 Inference 31

5.1 The Full Posterior . 31

5.2 Integrating out Parameter Distributions 32

5.3 De�ning the Resampling Steps 37

5.3.1 Computing the Document Likelihood 37

5.3.2 Resampling the Hidden Variables 38

5.4 Posterior Regularization . 40

5.5 Summary . 41

vii

viii CONTENTS

6 Informed Prior Knowledge 43
6.1 De�ning the Prior Knowledge . 43

6.1.1 Obtaining Word Similarities from WordNet 44
6.2 The Modi�ed Generative Process 45
6.3 The Modi�ed Inference Procedure 46

6.3.1 E�cient Prior Resampling 48
6.4 Summary . 49

7 Evaluation 51
7.1 Data . 51
7.2 Experimental Setup . 54

8 Results and Discussion 59
8.1 Comparison to Existing Systems 59
8.2 In�uence of Model Components 62
8.3 Qualitative Analysis . 65
8.4 Summary . 67

9 Conclusion 71
9.1 Future Work . 72

Chapter 1

Introduction

The goal of computational linguistics and natural language processing (NLP),
as a research area is to enable communication of humans and computers using
natural language. This problem has at least two dimensions: �rst, natural
language needs to be formalized in a way that is understandable for machines.
Secondly, NLP applications which require deep semantic knowledge, such as
natural language understanding components, or question answering systems,
need to be equipped with world knowledge, such that they are able to process
and convey information (Ovchinnikova, 2012; Ponzetto and Strube, 2009).

In this work, we aim to contribute towards tackling the second problem.
One bottleneck of any large-scale NLP system is common sense knowledge.
Humans acquire a vast variety of implicit knowledge throughout their life time.
However, it remains prohibitive to manually collect and explicitly represent
broad-scale world knowledge for any system exceeding a restricted, domain-
speci�c application (see, e.g. Lieberman et al. (2004)).

We present a system that learns a speci�c kind of world knowledge, namely
script knowledge from data. Scripts capture the sequence of events involved in
very common, every-day scenarios, such as Eating in a restaurant, Doing
laundry, or Taking a bus. Scripts have �rst been introduced in the 1970s
in the research area of Arti�cial Intelligence (AI) (Schank and Abelson, 1975).
It has been shown that script knowledge improves performance of NLP appli-
cations, such as text understanding systems (Cullingford, 1978; Miikkulainen,
1995).

Through experience, humans acquire knowledge about the stereotypical event
sequence involved in a scenario. There is general agreement, for example, that in
the Eating in a restaurant scenario one necessarily has to �order the food�,
before he can �eat the food�, and that �paying for the food� is another obligatory
event, that tends to occur towards the end of the scenario. Scripts capture this
information in an abstract way.

Our system will learn script knowledge, from explicit instantiations of sce-
nario -speci�c scripts, event-sequence descriptions (ESDs), as introduced in Reg-
neri et al. (2010). Table 1.1 displays three ESDs for the scenario Eating in a

restaurant. Equivalent event descriptions are row-aligned, such that each row
in the table corresponds to one event type. Event types are displayed in their
chronological order. Equivalent participant descriptions are highlighted in the
same color, each color corresponds to one type of participant. We de�ne par-

1

2 CHAPTER 1. INTRODUCTION

ESD 1 ESD 2 ESD 3

Enter
Sit at table Be seated

Wait
Read menu Check the menu

Listen to specials
Give order to waiter Order Order the meal

Wait Wait for meal
Talk to the friends

Consume meal Enjoy food Have meal
Pay check Pay Pay the bill

Leave a tip

Table 1.1: Three event-sequence descriptions (ESDs), each describing a typi-
cal chain of events that constitute the scenario of Eating in a restaurant.
Descriptions of equivalent event types are row-aligned. Terms referring to equiv-
alent types of participants are highlighted in the same color.

ticipants in a scenario as any object or person participating in any event in an
ESD. While each individual ESD is a subjective, possibly incomplete or even er-
roneous description of the scenario, a corpus of such descriptions, each obtained
from a di�erent annotator, comprises a generic idea of the event sequence that
makes up the scenario.

We follow Regneri et al. (2010) and Regneri et al. (2011), in de�ning our
learning objective. Like the previous work, the learning process of our model
is completely unsupervised. With the proposed model we aim to induce three
kinds of characteristics of scripts from scenario-speci�c corpora of ESDs:

1. The event types involved in the scenario

2. Constraints on the temporal ordering of event types

3. The participant types in occurring the scenario

In previous work, the three objectives de�ned above were induced in separate
steps, using a pipeline-based system architecture. Event types and ordering con-
straints were induced using graph-based methods (Regneri et al., 2010), and on
this basis participant types were learnt using similarity-based methods (Regneri
et al., 2011).

1.1 Contributions

We present a di�erent view on the problem of script learning, by arguing that
event types, event orderings and participant types involved in ESDs strongly
correlate, and should thus provide useful cues for each other. To the best of
our knowledge, we are the �rst to propose a model for learning event types,
participant types, and ordering constraints jointly from ESDs.

We formalize our joint learning objective in the framework of Bayesian mod-
eling. We provide a fully formalized, hierarchical Bayesian model for learning

1.2. THESIS OUTLINE 3

script knowledge, in the form of a generative story which includes the three
learning objectives. An inference algorithm for the model is derived.

Two components of our model are worth pointing out. First, we incorporate a
statistical model over orderings, the Generalized Mallows Model (GMM; Fligner
and Verducci (1986)) for modeling ordering constraints. The GMM allows us to
model event type-speci�c temporal �exibility, and we will be able to model event
optionality, both characteristics of scripts that were not captured in previous
approaches to the same task. We will show that the GMM is a robust model of
event ordering constraints.

Secondly, we are faced with the problem of learning from small data sets,
since the available scenario-speci�c ESD corpora are very limited in size. We
will obtain prior knowledge about word similarities in a fully unsupervised way
in order to leverage this problem and guide the learning process. We will use
the covariance matrix of a Multivariate Gaussian distribution to encode this
knowledge and guide inference of type-speci�c language models, by triggering
correlation in realization probabilities for semantically similar words.

In short, our contributions can be summarized as follows:

1. We introduce a joint model for inducing event types, participant types,
and ordering constraints in a fully unsupervised way.

2. We formalize the tasks using a hierarchical Bayesian model, and derive an
inference algorithm.

3. We show that the GMM is an accurate model for constraints on event
orderings.

4. We tackle the problem of learning from small data sets by incorporating
prior knowledge about word correlation in a fully unsupervised way.

1.2 Thesis Outline

In Chapter 2, we present previous work in areas related to our project, namely
script modeling, models of ordering and topic models. We continue in Chapter
3 by providing some technical background on the components and techniques
we use in our model and in the inference procedure. We introduce our model in
Chapter 4 by giving an informal overview, and subsequently describing the for-
mal generative story. We derive the inference process for our model in Chapter
5. Chapter 6 explains how we extend our model with the prior knowledge com-
ponent. We extend the generative process, and describe the modi�ed inference
algorithm. In chapters 7 and 8 we present our evaluation setup and a discussion
of the results of our experiments, respectively. We �nally conclude in Chapter
9, and present possibilities for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

In order to place the work presented here into the landscape of existing re-
lated research, we will discuss previous work which is relevant to our learning
objective, and the methodology presented in this thesis; we will point out the
extensions and contributions we aim to make.

Topic-wise, our work falls into the area of script acquisition and modeling,
an area of research which has been pursued in �elds such as Arti�cial Intelli-
gence, and (computational) linguistics for decades. We give an overview over
the concepts and approaches in this �eld in Section 2.1.

One central characteristic of our model is its ability to infer ordering con-
straints on event types. In Section 2.2, we provide a brief overview over models
of ordering which have been proposed previously.

Methodologically, our work builds upon the area of topic modeling, which
has become a popular approach towards a variety of problems in computational
linguistics and NLP. We will provide a brief overview over topic models, and
discuss some previously proposed extensions which are most related to our work
in Section 2.3.

2.1 Scripts

A prominent opinion in �elds broadly related to Arti�cial Intelligence is that the
ultimate bottleneck for creating arti�cial intelligence is encoding world knowl-
edge (Schank and Abelson, 1975). While humans acquire vast amounts of knowl-
edge about rules of their physical and cultural environments over their whole
lifetime, it is very hard to equip an arti�cial intelligence system with background
knowledge that allows for �exible inference, reasoning and reaction towards the
situations it encounters.

One possible encoding of a particular kind of common sense knowledge are
scripts, which have been under active research since their introduction in the
1970s (Schank and Abelson, 1975; Barr and Feigenbaum, 1986). Scripts are ab-
stract de�nitions of stereotypical sequences of actions involved in common every
day situations, such as Eating in a restaurant or Cooking pasta. Scripts
provide information about the temporal sequence of events involved in the situ-

5

6 CHAPTER 2. RELATED WORK

ation, as well as about participants involved in the events1. An inherent script-
knowledge base should enable an arti�cial agent to trigger appropriate scripts
based on the input it receives, to draw inferences about such input and to re-
act in an appropriate way. Concretely, script-like knowledge will be useful for
standard NLP tasks such as automatic summarization or question answering
(Miikkulainen, 1995).

A slightly di�erent approach to encoding procedural knowledge has been
made in the FrameNet project (Baker et al., 1998). Here the emphasis lies on
atomic events, or frames, generally consisting of a verb, and constraints on the
types of arguments � or semantic roles � the verb requires. For example the
�selling� event requires a �seller�, a �buyer� and �goods�. Additionally, some
relations between frames are captured, which allows for limited construction
simple event chains from frames.

Both of the above approaches involve manual construction and are built in a
top-down way: knowledge is manually de�ned, and systems using this knowledge
can draw inferences based on exactly this available knowledge base. While hand-
built knowledge is arguably very accurate and contains little or no noise, it is
also very limited and in�exible. On the one hand it is prohibitive to manually
encode large-scale knowledge databases, and on the other, the encoded rules
and information tend to be intolerant to noise as it typically occurs in input
data.

For �exible, broad-coverage applications it would thus be desirable to be able
to learn scripts automatically from data. Chambers and Jurafsky conducted a
series of research on the extraction of narrative chains from newswire text. Nar-
rative chains are chains of events occurring in natural text (such as Convicting
a criminal). Chambers and Jurafsky (2008) present-a three-stage approach
for inducing event sets and a temporal ordering of events, given a parsed corpus
with resolved co-referents: �rst, sub events of particular narrative chains are
induced based on common protagonists between events, using pointwise mutual
information (PMI)2 based on how often a protagonist realization is shared by
any pair of verbs in the text. Secondly, a classi�er is trained on the TimeBank
corpus (Pustejovsky et al., 2003) as well as manually de�ned linguistic features,
and based on that classi�er the events are sorted pairwise into a temporal order.
Finally, events are clustered together into discrete sets, based on the PMI score
described above, and the clusters are ordered using the temporal classi�er. The
resulting structure, containing temporally ordered equivalence classes of events,
can be interpreted as a representation of a classical script. However, consider-
ing that the events are explicitly described in newswire text, narrative chains
describe generally less fundamental knowledge than scripts.

Subsequently, Chambers and Jurafsky present an extension to their work,
in which they not only consider the protagonist of events when building the
narrative chain, but all involved participants (Chambers and Jurafsky, 2009).
Their model learns sets of events which construct a narrative chain, as well
as classes of entities that can �ll the various argument positions of the verbs
involved in the chain. Events and participants are thus learnt jointly, using

1According to the original de�nition of scripts, they additionally encode information about
causal relations between events. This aspect, however, is beyond the scope of this work.

2Pointwise mutual information of two events a and b is a measure for the extent to which
knowing event a reduces the uncertainty about event b, and vice versa. It expresses the shared
information of a and b (cf. Manning and Schütze (1999)).

2.1. SCRIPTS 7

an extended version of the PMI score mentioned above, by conditioning on the
presence of a particular argument. They show that considering all participants
improves the quality of the induced narrative chains. Temporal ordering of
events is not considered in this work.

In contrast to our work, Chambers and Jurafsky extract narrative chains
from natural, newswire text. While the resources in this domain are vast, they
may not be appropriate for script extraction since the fundamental feature of
scripts is to explicitly de�ne very basic event chains, which are usually left
implicit in discourse. In natural texts parts of obvious causal chains are of-
ten omitted, since it is assumed that the readers share basic world knowledge.
Chambers and Jurafsky (2009) provide a joint model for inducing event types
and participant types, but do not incorporating event orderings into the setting.
We argue that joint learning of all three factors will improve the quality of the
learnt scripts. Finally, the temporal ordering inferred in Chambers and Juraf-
sky (2008) is based on local, pairwise decisions. We will induce one globally
coherent order for each scenario.

O'Connor (2012) presents a latent variable model for unsupervised learning
of frames from text. Their model builds on the Latent Dirichlet Allocation
(LDA) topic model (Blei et al. (2003), cf. Section 2.3). Frames are incorpo-
rated as latent variables in the model, which link subject-verb-object triples.
Furthermore, latent classes of words are induced which can realize any of the
components in the triple. A document is assumed to be generated from a sparse
multinomial distribution over frames. Each triple-component of a generated
frame is then assumed to be drawn from a latent class of words. Realizing
words are drawn from a class- and component-speci�c language model. Classes
are shared across frames.

Titov and Klementiev (2011) propose a similar, but more complex, Bayesian
model which, in addition to frame semantic information, induces syntactic rela-
tions, in the form of dependency tree fragments. Their model is non-parametric,
meaning that they induce the number of distinct frames and roles, and is evalu-
ated on the biomedical domain. Titov and Klementiev (2012) propose another
unsupervised Bayesian model for semantic role labeling, which Modi et al. (2012)
extend towards joint inference of semantic frames, and show that it successfully
induces FrameNet-style annotations for a broader domain.

Like the model we propose, the models described above infer verb frames
(types of events), and corresponding argument types (types of participants) in an
unsupervised way from data, using an unsupervised Bayesian model. However,
focus lies on independent frames, while we model events in the context of a
whole scenario, and want to infer ordering constraints in addition to the targets
mentioned above.

Our work is most closely related to the work conducted by Regneri et al
(Regneri et al., 2010, 2011). In contrast to the previously described approaches,
Regneri and colleagues collect a corpus of explicit descriptions of various scenar-
ios, obtaining a variety of detailed scenario-speci�c event-sequence descriptions
(ESDs). For each scenario they ask non-expert annotators to give an explicit,
temporally ordered description of the sequence of events that typically happen
in the scenario. Descriptions are given in �bullet-point style� language. The
goal here is to learn paraphrase sets of descriptions of events, as well as tem-
poral ordering constraints on these events. For each scenario, in a �rst step,
event descriptions referring to the same type of event are aligned based on se-

8 CHAPTER 2. RELATED WORK

mantic similarity. Based on this alignment, a temporal script graph (TSG) is
computed, using multiple sequence alignment. Edges encoding direct prece-
dence of two events are added to the graph on the basis of semantic cues of the
paraphrase class and structural cues of the TSG.

As an extension to this work, Regneri et al. (2011) present a system which in-
duces participant classes on the basis of the TSG. The goal here is not to induce
semantic roles, as in Chambers and Jurafsky's work, but to induce scenario-
speci�c synonym sets describing the same participant, so-called participant de-
scription sets (PDSs). In a �rst step all noun phrases as identi�ed by a depen-
dency parser are marked as participants in the scenario. Subsequently PDSs are
induced using semantic similarity information among the noun phrases, as well
structural information obtained from the positions at which a noun phrase ap-
pears in the TSG. Methodologically, integer linear programming (ILP) is used to
combine these cues and to decide for each pair of noun phrases in all descriptions
of one scenario whether they belong to the same PDS or not.

In our work, we will use the dataset collected by Regneri and colleagues (cf.
Section 7.1 for a more detailed description of the data), and we aim to learn the
same objectives, namely identifying scenario-speci�c event equivalence classes,
participant equivalence classes and constraints on event orderings. Unlike Reg-
neri et al, who similar to previous approaches propose a pipeline-based architec-
ture, we will learn all three objectives jointly. We will use one statistical model
for inference, instead of relying on semantically or structurally based heuristics
at various points. Furthermore, the graph induction algorithm used in Regneri
et al. (2010), multiple sequence alignment, is not able to model some tempo-
ral characteristics of script events. In particular, event type-speci�c temporal
�exibility and event type optionality cannot be encoded in the TSG. Taking
the scenario of cooking pasta as an example, the event �grating cheese� can
occur basically at any temporal position in the event sequence, while �boiling
water� should clearly precede �adding pasta�. As we describe in Section 4.2, our
Bayesian model will encode these characteristics.

2.2 Modeling Ordering

One central aspect of our model is its ability to infer constraints on possible
orderings of event types. As mentioned previously, event ordering has been
modeled using a semantically trained classi�er (Chambers and Jurafsky, 2008),
or multiple sequence alignment (Regneri et al., 2010). Corpus-based meth-
ods for information ordering which extract features of adjacent sentences from
corpora and use this for coherent summarization of multiple documents have
been proposed (Barzilay et al., 2002; Lapata, 2003). Such methods rely on
domain-speci�c corpora which need to be large enough to encode representa-
tive information about ordering possibilities, or hand-built for the particular
objective.

It would be desirable, however, to model the probability of particular or-
derings in a fully unsupervised way, and with a statistical model that can be
integrated in our general probabilistic framework. The Generalized Mallows
model (GMM,Fligner and Verducci (1986)) is a statistical model over permu-
tations, and lends itself particularly well to integration into our unsupervised,
Bayesian setting. We explain the GMM in detail in Section 3.3.

2.3. TOPIC MODELS 9

The problem of combining rankings of multiple experts, such as the search
results returned for a query by multiple search engines, has drawn much at-
tention recently, and the GMM has been thoroughly tested on this problem
(Lebanon and La�erty, 2002; Klementiev et al., 2008; Meila et al., 2007).

From a slightly di�erent perspective, the GMM can also be used to discover
a �ground truth� from a set of observations, such as inferring the true sequence
of events in an accident from a set of eyewitness reports. Steyvers et al. (2009)
employed the Mallows model, a constrained version of the GMM, for this task,
which is very similar to the problem we are tackling � inferring a canonical order
of events involved in a scenario from a set of potentially inaccurate scenario
descriptions obtained from non-expert annotators.

2.3 Topic Models

Methodologically, our approach falls into the area of topic modeling. In the
past decade, topic models have gained increasing popularity as a method for
modeling various aspects of natural language. Classic topic models such as
Latent Dirichlet Allocation (LDA, Blei et al. (2003)) infer a latent structure
underlying the text in an unsupervised way, by assigning each word a hidden
label, or `topic'. From the generative viewpoint, each document is assigned a
distribution over topics, and for each topic, realizations (words) are drawn from
a topic-speci�c word distribution. Crucially, each topic is drawn independently
of all other topics from a topic distribution and, equivalently, words are drawn
independently from topic-speci�c word distributions.

This fundamental idea has been extended in numerous ways in order re-
lax the inherent independence assumption between topics and between words.
Among many other extensions, hierarchical topic models (Blei et al., 2004) and
correlated topic models (Blei and La�erty, 2005; Hennig et al., 2012) have been
proposed. Under the intuitive assumption that topics do not co-occur randomly,
but subsets of topics are highly correlated3, Blei and La�erty (2005) induce
topic correlations using the covariance matrix of the logistic-normal distribu-
tion (Aitchison, 1982). They show that their correlated topic model outperforms
classic LDA.

We use basic concepts from classical LDA in the sense that we explain docu-
ment structure as a mixture of event types and participant types, which can be
seen as our set of `topics'. We induce a speci�c language model for each event
type and each participant type.

Due to limited amount of available training data, we will model word cor-
relations as prior knowledge, in a similar way as Blei and La�erty model topic
correlations. While Blei and La�erty (2005) learn the covariance matrix, we will
construct it a priori and use it to encode correlations in the parameterization
of our model. Raina et al. (2006) propose a similar idea in the framework of
transfer learning. The matrix is induced based on learning problems similar to
the actual task. Raina et al work in supervised learning framework, while we
construct the covariance matrix in a completely unsupervised way.

We will incorporate the Generalized Mallows Model into our model of script
knowledge, in order to model event ordering constraints. Chen et al. (2009)

3In a document about economy the topics �nances and trade are very likely to occur, while
the topic interior design is rather unlikely.

10 CHAPTER 2. RELATED WORK

propose a topic model augmented with the GMM, and use it to infer global
document structure. They tackle the problem of discourse segmentation in
highly structured documents, such as Wikipedia articles. Topics in a document
are drawn from a topic distribution and sorted with respect to an ordering
which is drawn from the GMM. Topics are thus not only inferred based on the
words occurring in them, but also based on the position at which they occur in
the document. This extension can also be interpreted as relaxing the original
topic-independence assumption of LDA by imposing coherent topical structures
across documents. Chen et al successfully model document discourse structure
using the GMM, which motivates us to develop a structurally similar model
for inference on script data. We incorporate the GMM into our topic model
of events and participants in order to encourage a coherent scenario-speci�c
ordering across all scenario descriptions. In particular, the type-speci�c clusters
of event descriptions induced by our model will not only be based on their
particular word distribution, but also on the position at which the descriptions
tend to occur within an ESD.

Chapter 3

Technical Background

We provide mathematical foundations on which the de�nition and learning pro-
cedure of our model, as described in the following sections, are based. We start
by describing the general motivation behind using Bayesian models in Section
3.1, before we explain their mathematical characteristics relevant to this work in
Section 3.2. We explain and formally de�ne the kinds of distributions involved
in our model in Sections 3.3 - 3.4, and the inference techniques which we will
use for learning the model parameters in Section 3.5.

3.1 Generative Modeling

The general aim of statistical models is to explain observable real-world phenom-
ena, such as language. In addition to such observable variables (y), auxiliary
unobservable, or latent, variables (θ) are introduced. Such latent variables are
believed to be the underlying mechanism which explains the behavior of the
observable variables. Based on this, two ways of modeling have evolved (cf. e.g.
Bishop (2006)):

1. Discriminative Modeling, which aims to infer a conditional probability
distribution of the observable data y given the latent variables θ P (y|θ),
and thus predicts y from θ.

2. Generative Modeling, which aims to infer a joint probability distribution
P (y, θ), and thus explains both the observable data and the latent param-
eters.

In this work, we develop a generative model of script data. Generative models
tend to be more robust with respect to incomplete or unlabeled data, because
they allow for incorporation of uncertainty, as we will explain below. They
thus are more suitable for our unsupervised inference problem from restricted
datasets. Since the joint distribution P (y, θ) is learnt during inference, trained
generative models are not only capable of labeling data, but they can also gen-
erate data themselves, given that the distributions of the hidden variables are
known.

11

12 CHAPTER 3. TECHNICAL BACKGROUND

3.2 Bayesian Inference

In general, we want to learn a model with parameters θ which provides a good
explanation for our observed data y. However, we need to select this model
from all possible models θ1, ...θk, and it is often the case that several of those
explain our data well, potentially capturing di�erent aspects. Deciding for one
particular model might lead to over-con�dent predictions, because it ignores
the uncertainty with which that particular model was selected. It would be
desirable to be able to have a measure for this uncertainty.

Bayesian inference provides a way for dealing with uncertainty, by avoiding
the choice of one particular model, but including all possible models into the
�nal model to be learnt (Hoeting et al., 1999). Assume, there are K possible
models which potentially explain the observed data. In Bayesian inference, the
models are themselves considered to be random variables. Instead of deciding
for one particular model, we sample model parameters from the probability
space over all possible models P (θ).

In order to get a full probabilistic formulation of this setup, we need a prior
measure for the probability of any particular model i, P (θi). This prior allows
to inject some intuition into the inference process, about what kind of models
we deem more likely. The probability of a model P (θi) is now a measure for
uncertainty when picking this particular model.

Bayes' rule provides a way to relate the prior probability described above to
the evidence for our parameter selection, as obtained from observed data, and
thus allows us to update our uncertainty with this evidence. In the remainder
of this section, we will explain how Bayes' rule is used to do inference in the
Bayesian setting. Subsequently, we will explain how prior knowledge can be
used to guide the inference process.

3.2.1 Bayes' Rule

The goal of an inference procedure is to learn a model with parameters θ which
explains the observed data y as accurately as possible. Bayes rule formalizes
a measure for the suitability of a model, by relating newly observed evidence
from the data y to the prior probability of hypothesized parameters θ, before
the data was observed:

P (θ|y) =
P (y|θ)P (θ)

P (y)
. (3.1)

We can directly relate Bayes' rule to the intuition, by naming the components
as follows:

posterior =
likelihood ∗ prior

evidence
(3.2)

The posterior probability of the model is proportional to its prior probability
and the likelihood of the observed data under the model. The denominator of
Bayes' rule corresponds to the marginal likelihood of the data. It is constant
w.r.t. the parameters θ and thus usually irrelevant when determining the best
hypothesis.

In Bayesian estimation, however, we do not aim to infer the parameters that
best explain our data, but rather view parameterizations as random variables

3.2. BAYESIAN INFERENCE 13

which follow a distribution themselves. In our inference procedure, we take all
parameterizations (all possible models) into account.

This leads to two modi�cations in the computation of Bayes' rule. First,
the denominator of Equation 3.1 now is not the probability of the data given
one particular parameterization anymore, but becomes the expected value given
the distribution over all possible parameterizations θ. Given that the expected
value of a variable is the weighted average over all possible values the variable
can take, we now need to integrate over all possible parameterizations in the
denominator of Bayes' rule.

Secondly, we need to base our probability for a particular parameterization
on a probability distribution: a probability distribution over probability dis-
tributions. This distribution is itself parameterized with hyperparameters γ.
Adding this additional layer makes our model a hierarchical Bayesian Model
(see Section 3.2.2 for more information). Bayes' rule becomes:

P (θ|y, γ) =
P (y|θ)P (θ|γ)∫

θ
P (y|θ, γ)P (θ|γ)dθ

(3.3)

The integral in the denominator often cannot be computed analytically, and it is
in practice often approximated by variational or sampling methods (cf. Section
3.5).

3.2.2 Prior Knowledge

In Bayesian modeling, we can include a prior intuition about how much we
believe in any particular model, or parameterization. This belief is represented
as a distribution over all possible parameterizations θ, and it takes parameters
itself. These parameters, γ, are called hyperparameters. Hyperparameters allow
for injection of prior, subjective, knowledge: by assigning parameters θ with
speci�c characteristics a high prior probability P (θ|γ), we can in�uence the
shape of our posterior distributions given the parameters θ. Hyperparameters
are thus de�ned manually, or empirically by optimization on a test data set1.
Below, we introduce the notion of conjugate prior distributions. We describe the
advantages of using conjugate prior distributions, and introduce the particular
distributions used in our model.

Mathematically, it is particularly convenient to choose a prior distribution
over parameterizations which is conjugate to the posterior distribution over
parameterizations. This means that the posterior distribution, after updating
the prior with the evidence, belongs to the same family of distributions as the
prior distribution. Only the distribution's parameters changed.

One advantage of conjugate priors is the possibility to integrate out the
actual parameters θ of the distribution we are interested in. By summing (or
integrating) over all possible values the parameters θ can take, one can represent
them implicitly in the model, which leads to a more e�cient learning process.

Given a conjugate prior on a distribution, the hyperparameters can be inter-
preted as pseudo-counts: we assign ni additional counts to the number of times
event i has been observed in the data. In case there is no reliable prior intuition

1We manually de�ne our hyperparameters in order to be able to speci�cally encode some
properties of the data we work with. A common alternative is to set the hyperparameters
using maximum-likelihood estimation over all possible values they can take.

14 CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.1: Shape of the Beta distribution with various parameter choices. Pa-
rameters > 1 lead to a unimodal shape. Parameters < 1 lead to a bimodal
shape. Unequal parameters skew the distribution.

available, it is common to set the hyperparameters uniformly, thus providing an
uninformative, or uniform prior. This amounts to assigning an equally valued
pseudo count to every possible event.

The Beta-Binomial Distribution

The conjugate prior to the Binomial distribution is the Beta distribution (Bishop,
2006). The Beta distribution takes two parameters α > 0 and β > 0 for the
possible outcomes of the Binomial distribution. For a Binomial distribution
with parameters π it is de�ned as

P (π|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
πα−1(1− π)β−1 (3.4)

Γ(·) stands for the Gamma function, an extension of the factorial to real num-
bers.

The Beta distribution can take various shapes depending on the choice of
parameters. Figure 3.1 displays the Beta distribution with �ve di�erent param-
eterizations. The value on the x-axis corresponds to the success probability π
of the Binomial distribution. Beta(1,1) is a uniform distribution, which means
that any success probability π for a Binomial distribution is equally likely. With
uninformed parameters smaller than 1, the Beta distribution becomes symmet-
ric and bimodal at the outer edges, which means that π is most likely either
close to 1 or close to 0. This results in sparse posterior distributions, a feature
we often want to achieve in our posterior distributions in Bayesian models of
language. The smaller the parameters, the greater becomes the preference for
parameterizations that lead to a sparse posterior distribution. Informed param-
eters smaller than zero result in a skewed distribution, favoring either a high
success probability close to 1 (if α > β) or a success probability close to 0 (if
α < β).

As mentioned above, given a conjugate prior it is possible to integrate over
all possible parameterizations π. This allows us to interpret the parameters

3.2. BAYESIAN INFERENCE 15

α and β as pseudo counts. Imagine event a has been observed ca times with
probability π, and event b has been observed cb times with probability (1−π) in
our data D. We combine this �likelihood� from the data with our �prior� belief
in parameterization π, encoded as Beta(α, β).

P (π|D;α, β) ∝ P (D|π)P (π|α, β) (3.5)

∝ [πca(1− π)cb][πα−1(1− π)β−1] (3.6)

∝ πca+α−1(1− π)cb+β−1 (3.7)

The equation in line 3.5 directly follows from Bayes' rule, and we substitute
the de�nition for the respective distributions in line 3.6. The interpretation
of α and β as pseudo counts becomes directly apparent in this notation, in
line 3.7. The Beta parameters are simply added to the number of observations
of the respective events. Note that the resulting term in 3.7 is again a Beta
distribution, with updated parameters.

The Dirichlet-Multinomial Distribution

The Dirichlet distribution generalizes the Beta distribution to multiple possible
outcomes2, the same way the Binomial distribution is generalized by the Multi-
nomial distribution (Bishop, 2006). The Dirichlet Distribution is parameterized
by a vector of parameters γ = [γ1, ...γI], one for each possible outcome i of the
Multinomial. For a Multinomial distribution with parameters θ the Dirichlet
distribution is de�ned as

P (θ|γ) =
Γ(
∑
i γi)∏

i Γ(γi)

∏
i

θγi−1
i (3.8)

The behavior of the Dirichlet distribution can be directly extrapolated from
the Beta distribution towards the multidimensional case. Most relevant for our
model, for parameters 1 > γi > 0 the likely parameterizations θ will result in
sparser Multinomial distributions with decreasing values γi.

Like for the Beta-Binomial distribution, it is possible to integrate out the
parameters θ under the conjugate Dirichlet prior, and interpret the parameters
γ as pseudo counts. Given data D containing observation counts ci for each
possible outcome i, the posterior distribution becomes

P (θ|D;γ) = P (D|θ)P (θ|γ) (3.9)

∝
[∏

i

θcii

][∏
i

θγi−1
i

]
(3.10)

∝
∏
i

θci+γi−1
i . (3.11)

Again, we can observe the in�uence of the Dirichlet parameters as pseudo counts
directly in line 3.11, and we obtain a Dirichlet distribution with updated pa-
rameters.

2The Beta distribution is actually the Dirichlet distribution with exactly 2 dimensions.

16 CHAPTER 3. TECHNICAL BACKGROUND

We have explained the advantages and mathematical details of Bayesian infer-
ence, and how preference towards particular parameterization can be expressed
through prior knowledge. Given that we infer the joint probability of all pa-
rameters θ of the model, it is straightforward to incorporate many di�erent
components into a Bayesian model, as long as inference remains tractable. Be-
low, we introduce the additional components we will include in our Bayesian
script model.

3.3 The Generalized Mallows Model

We will use the Generalized Mallows Model (GMM, Fligner and Verducci (1986))
to model the ordering of events in ESDs. The GMM is a generalization of the
Mallows Model (Mallows, 1957). We will �rst describe the Mallows Model and
then introduce the GMM.

The Mallows Model is a probabilistic model over permutations of a set of
elements. It de�nes a distribution over orderings, taking two parameters: a
canonical ordering σ and a dispersion parameter ρ ≥ 0. Generally, the canonical
ordering of K elements can be de�ned as the identity ordering σ = {1, 2, ...,K}
without any loss in generality. We will assume the identity ordering as canonical
ordering in the rest of this work. Finally, a distance function d(π, σ) between
an observed ordering π and the canonical ordering needs to be de�ned.

The probability of an ordering π decreases exponentially with increasing
distance to the canonical ordering. The dispersion parameter ρ functions as
a penalization factor, which encodes the degree to which dispersion from the
canonical ordering is tolerated:

P (π) ∝ e−ρd(π,σ). (3.12)

The single mode of the distribution is reached when π = σ, i.e. d(π, σ) = 0. An
increasing value of ρ implies a stronger penalization of the distance, and thus
results in a sharper distribution, centered around the canonical ordering.

Before we describe the Generalized Mallows Model (GMM) in detail, we
explain how the distance between two orderings is represented in the GMM.

Distance in the Generalized Mallows Model

While in theory any distance metric can be used for measuring the distance
between two permutations, the most common choice is Kendall's τ distance
(Kendall, 1938). Kendall's τ distance de�nes the distance d(π1, π2) between
two orderings π1 and π2 as the number of pairwise �ips necessary to turn π1

into π2. For the Generalized Mallows Model, we need to formulate Kendall's τ
distance in a way that can be factorized into element-wise components.

Fligner and Verducci (1986) introduce the notion of inversions to specify the
dispersion of each element i in the observed ordering from its canonical position.
For an observed ordering π of a set containing K elements, the distance d(π, σ)
is represented through an inversion vector v of length K − 1. Each position
i in v corresponds to element i in the canonical ordering σ, and its value is
the number of elements j such that j > i occurring before i in the observed
ordering π. Given an observed ordering π with inversion count vector v, each

3.3. THE GENERALIZED MALLOWS MODEL 17

value vi thus represents the distance of element i to its canonical position in the
ordering, d(πi, σi) = vi.

As an example, taking the canonical ordering σ = {1, 2, 3} and the observed
ordering π = {3, 1, 2}, we obtain the inversion vector v = {1, 1}. The inversion
count for element K is always 0 since there cannot be an element i such that
i > K. Hence the length of v is K − 1.

The Generalized Mallows Model

Fligner and Verducci (1986) introduce the Generalized Mallows Model (GMM),
generalizing the Mallows Model by introducing a vector of dispersion parame-
ters, ρ = ρ1, ...ρI . Each element i in the permutation is assigned an individual
dispersion parameter, de�ning an individual level of tolerance for distance from
its canonical position. The probability of an ordering becomes:

GMM(π;ρ) =
e−

∑
i−ρid(πi,σi)

ψ(ρ)
(3.13)

=
∏
i

e−ρid(πi,σi)

ψi(ρi)
(3.14)

=
∏
i

e−ρivi

ψi(ρi)
(3.15)

with the normalizing constant ψi(ρi) = 1−e−(K−i+1)ρi

1−e−ρi , K the total number of
elements, and i the position of element i in the canonical ordering. Our inference
algorithm works with the unnormalized GMM distribution, so we will omit the
normalizing constant in the remaining discussion and change the equality to
proportionality.

The de�nition in Equation 3.15 allows factorization of the distribution into
individual components for each element i

GMMi ∝ e−ρivi . (3.16)

With parameters ρ > 0 the probability of an ordering is maximized when
d(πi, σi) = 0 (or, equivalently, vi = 0) for every i, i.e. when the observed order-
ing resembles the canonical ordering. A high value for parameter ρi indicates a
strong tendency for element i to stay at its canonical position.

In our script model we use the GMM in order to infer one speci�c dispersion
parameter ρi for every event type i in our model. With the induced parameters,
we will be able to model individual temporal �exibility for every event type.

The Conjugate Prior

Since the GMM belongs to the exponential family, a conjugate prior can be
de�ned. From this prior, the parameterization of the GMM is sampled, in
particular the dispersion parameter vector ρ. Like the GMM, the conjugate
prior can be factorized into element-wise components for each ρi (Fligner and
Verducci, 1990):

GMM0(ρi|vi,0, ν0) ∝ e−ρivi,0−log(ψi(ρi))ν0 , (3.17)

18 CHAPTER 3. TECHNICAL BACKGROUND

where vi,0 and ν0 are hyperparameters which need to be de�ned manually. The
hyperparameter vi,0 encodes the distance of element i from its canonical position
observed in prior `pseudo trials', and ν0 is the number of such pseudo trials, i.e.
the weight of the prior information.

It is di�cult to manually set vi,0 for every element i. Remember that vi
encodes the number of elements j such that j > i in the observed ordering.
This de�nition implies that the range of possible values for vi is individual for
each element i, namely K − i, where K is the total number of elements and i
is the canonical position of element i. We follow Chen et al. (2009), in de�ning
the vector of prior inversion counts by specifying another parameter, common
to all i, which we call ρ0. Now each vi,0 is computed such that the maximum
likelihood estimate of ρi is ρ0. This amounts to evaluating the equation

vi,0 =
1

eρ0 − 1
− K − i+ 1

d(K−i+1)ρ0 − 1
. (3.18)

3.4 The Logistic Normal Distribution

The Logistic Normal distribution (Aitchison, 1982; Blei and La�erty, 2006) mod-
els correlations among components of a vector de�ned on the simplex3. A nor-
mally distributed parameter vector x is sampled from a Multivariate Gaussian
N(Σ,µ) distribution in logarithmic space

log p(x|Σ,µ) ∝ ψ − 1

2
(x− µ)TΣ−1(x− µ), (3.19)

with the normalizing constant ψ = d
2 log(2π) − 1

2 log(|Σ|), and d the number
of components in x = [x1, ..., xd]. The Multivariate Gaussian N(Σ,µ) is the
generalization of the Gaussian distribution to the multivariate case. It is used
for modeling the correlations among a number of normally distributed random
variables. Assuming d random variables, the Multivariate Gaussian has param-
eters Σ, a d× d covariance matrix and µ, a mean vector with d elements. The
parameter µi encodes the mean value for every random variable i, and Σ encodes
the variance of every random variable (along the diagonal), and the co-variances
between any two components i and j in cell Σi,j .

The sampled parameter vector x is subsequently normalized, in order to
ful�ll the simplex-constraint. The logistic transform is used for normalization,
yielding a vector η, such that for each component i:

ηi =
exp(xi)∑
i′ exp(xi′)

. (3.20)

In our model we will use the Logistic Normal distribution to induce type-
speci�c hyperparameters for our language models. We will specify the covariance
matrix Σ such that it encodes word similarities between all terms in our vocab-
ulary. Pseudo counts for semantically related words will then correlate, which
results in correlated term probabilities for each induced cluster. Please refer to
Section 6.1 for a more detailed explanation of how we use the Logistic Normal
distribution to encode prior knowledge in our model.

3This means that the components of the vector must some to one; it is e�ectively the space
of all possible parameterizations of the Multinomial distribution.

3.5. MARKOV CHAIN MONTE CARLO 19

Figure 3.2: Illustration of approximate samples our slices sampler returns for a
normally distributed random variable. In red, we show the true distribution (a
Normal distribution), and in blue we show the data points returned in 100 runs
of the slice sampler.

3.5 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a family of techniques for
approximate sampling from probability distributions (Neal, 1993; Andrieu et al.,
2003). As indicated before, the denominator of Equation 3.3 can generally not
be computed analytically for any reasonably complex model. MCMC methods
are one possible way of approximating a distribution as similar as possible to the
target posterior distribution of parameterizations given the data P (θ|y). They
are used when direct sampling from the target distribution is intractable, but it
can be evaluated up to the normalizing constant.

Figure 3.2 illustrates the process behind approximate sampling on a simple
example. We show the true distribution, a Normal distribution, in red. Below,
in blue, we show the data points returned by one particular MCMC algorithm,
a slice sampler. The slice sampler computes data points based on the unnor-
malized Normal distribution. It can be seen that the data points are distributed
proportionally to the probability mass of the true distribution.

In MCMC sampling, observations from the distribution to be approximated
are simulated by collecting sample points through a simulated random walk
over the probability space. Based on the observations, the characteristics of the
distribution are estimated, since the sampler will spend time in the regions of
the probability space proportional to the regions' probability. The process must
be a valid Markov chain: the probability of being in a certain state at time t
must depend only on the previous state at time (t− 1).

This method is only valid if the Markov chain has our desired posterior dis-
tribution P (θ|y) as its stationary distribution (MacKay, 2002). The randomly
initialized Markov chain will then converge to this distribution, which basically
means that the probabilities of the possible state transitions do not change

20 CHAPTER 3. TECHNICAL BACKGROUND

Initialize all variables x0 / initialize the markov chain
for Sampling iterations t = {1...N} do
for variables xti ∈ x do
xt+1
i ∼ P (xt+1

i |x
t+1
1 , ..., xt+1

i−1, x
t
i+1, x

t
i+2, ...)

Figure 3.3: The basic Gibbs sampling algorithm.

anymore. The chain can then be described by a single transition matrix. Or,
equivalently, the probability distribution over x(t+1) given xt does not depend
on the particular t.

It is di�cult in practice to check whether the Markov chain has converged
to its stationary distribution. It is thus common practice to:

1. Run the sampler for a 'burn-in' period during which no samples are col-
lected. This should eliminate the in�uence of the initial values.

2. Only take every nth sample for each variable to avoid auto-correlations
between the samples.

3. Run several samplers in parallel and average the results in the end.

Below, we explain the two MCMC algorithms we will use in the inference pro-
cedure of our script model.

3.5.1 The Gibbs Sampler

The Gibbs sampler is one particular MCMC method, which we will use for infer-
ence in our model (Geman and Geman, 1984; MacKay, 2002). It is particularly
useful when samples from a high-dimensional probability distribution need to be
obtained. Since we need to obtain the joint probability of all parameters in the
model given the data, the Slice sampler is a natural choice. Obtaining samples
from the joint distribution of all components x of a Multivariate probability
distribution is often hard. Gibbs sampling allows to instead sample in turn
from the conditional distribution of each variable xi conditioned on all other
variables except xi itself in order to approximate the joint distribution. This is
a valid approximation since the conditional distribution of a variable given all
other variables is proportional to the joint distribution:

P (xi = v|x1, ..., xi−1, xi+1, ..., xn) =
P (x1, ..., xn)

P (x1, ..., xi−1, xi+1, ..., xn)
. (3.21)

The normalization constant can generally be ignored since it does not depend
on xi.

A probability distribution over all possible values v for variable xi is com-
puted, conditioned on the current values of all other variables. The previous
value of xi is ignored in the computation. The value of variable xi is �nally
updated by sampling the new value from the computed distribution over all
possible v. An overview over the sampling process is given in Figure 3.3.

We will used collapsed Gibbs sampling for inference (Gri�ths and Steyvers,
2004). This means that we integrate over, or marginalize out, some of our

3.5. MARKOV CHAIN MONTE CARLO 21

Draw vertical corrdinate u ∼ Uniform(0, P ∗(xt)) [P ∗(x) ∝ P (x)]

Create horizontal interval (xl, xr) enclosing x
t

while True do
Draw horizontal coordinate xt+1 ∼ Uniform(xl, xr)
Evaluate P ∗(xt+1)
if P (xt+1) > u then
Break [accept xt+1 as new sample]

else
Shrink the interval (xl, xr) [if (xt+1, u) lies outside curve]

Figure 3.4: The basic Slice sampling process for a single transition of variable
x at t→ t+ 1. Adapted from MacKay (2002), page 375.

parameter distributions to reduce the state space of the Gibbs sampler, and
make inference more e�cient. This is possible, because we decide to use conju-
gate prior distributions for our parameter distributions (see Section 3.2.2). The
mathematical details for our model are given in Section 5.2.

3.5.2 The Slice Sampler

While the posterior distribution of most parameters in our model is discrete, and
posterior samples can thus be gained in a straightforward way, some parameters
follow a continuous distribution for which the normalization factor cannot be
computed. We use Slice sampling (Neal, 2003) to resample those parameters
from their continuous posterior.

Slice sampling is an e�cient MCMC method which is particularly robust to
parameter choices. Like Gibbs sampling, it provides samples from unnormalized
probability distributions but requires the distribution to be evaluate-able at
every point (MacKay, 2002).

The basic idea is to randomly sample a value y ∼ [0..P (xti)], where x
t
i is the

previous value of the variable xi we want to resample. A horizontal line is drawn
at y through the curve of P (x). Then, sample xt+1

i is drawn uniformly from the
area above the line, but inside the curve of P (x). Intuitively, the x-values in the
respective area are distributed proportional to their probability under the curve.
With Multivariate distributions this procedure can be repeated individually for
each component. Figure 3.4 summarizes the basic Slice sampling procedure.

Slice sampling might cause problems with multimodal densities, since the
horizontal line may be cut into disconnected pieces by the distribution. While
there are ways to optimize Slice sampling for multimodal distributions, the
distributions we apply Slice sampling to are unimodal, so we do not expect any
problems here.

22 CHAPTER 3. TECHNICAL BACKGROUND

Chapter 4

A Hierarchical Bayesian

Model for Scripts

After having established the necessary technical background, we will now de-
scribe our Bayesian model for inducing script knowledge. We start in Section
4.1 by providing a high-level description of the problem we want to solve, and
continue by giving an overview over the modeling assumptions we make in Sec-
tion 4.2. In Section 4.3, we will explain the formalized generative story of the
script model. For a key to the notation we use in this and the following chapters,
please refer to Table 4.1.

4.1 Problem Formulation

Our input data consists of scenario-speci�c corpora of event-sequence descrip-
tions. For each corpus, we want to cluster together equivalent event descriptions
referring to the same event type, and equivalent participant descriptions, refer-
ring to the same participant type, as illustrated in our introductory example
in Table 1.1. Practically, we label each event- and each participant description
in our corpus, and assign descriptions with identical labels to the same cluster.
We want to capture the canonical ordering of event types in our clusters. Con-
cretely this means that event types which tend to occur early in the scenario are
preferably labeled with a lower ID by our model than event types which occur
later1.

We specify the maximum number of possible event types E and the max-
imum number of possible participant types P that our model can use during
inference a priori. We set these numbers much higher than the expected actual
number of types of events and participants in the data. The model will use a
subset of all possible types.

Formally, assume a scenario-speci�c corpus c consisting of D ESDs c =
{d1, d2, ..., dD}. Each ESD di consists ofNd event descriptions di = {di,1, ..., di,Ni}.
Boundaries between descriptions of single events are marked in the data.

Each event description di,n is split into two parts, by extracting all partici-
pant descriptions from the original event description. Each participant descrip-

1This follows from the fact that we de�ne the identity ordering for the GMM as the
canonical ordering σ = [1, 2, 3, ..., n].

23

24 CHAPTER 4. A HIERARCHICAL BAYESIAN SCRIPT MODEL

Symbol Explanation

Iterators
d = 1...D Iterator over documents (ESDs in our corpus)
e = 1...E Iterator over event types
p = 1...P Iterator over participant types
i = 1...I Iterator over event descriptions in an ESD
j = 1...J Iterator over participant descriptions in an event description in an ESD
v = 1...|V | Iterator over terms in event- / participant vocabulary (clear from con-

text)
Hyperparameters

α+/ α− hyperparameters for eventtype realization
β+/ β− hyperparameters for participanttype realization
γe = [γ1, ...γ|Vη|] hyperparameters for language model of eventtype e
δp = [δ1, ...δ|Vξ|] hyperparameters for language model of participanttype p
ρ0, ν0 hyperparameters of the GMM
Ση/Σξ covariance matrix encoding event term similarities / participant term

similarities
Distributions over Latent Variables

θ = [θ1...θE] Binomial parameters modeling event type realization probabilities
ϕe = [ϕe1...ϕ

e
P] Binomial parameters modeling participant type realization probabilities

under eventtype e
ρ = [ρ1...ρE] dispersion parameters of the Generalized Mallows Model

ϑe = [ϑ1
e...ϑ

|Vη|
e] Multinomial parameters of language model for eventtype e

$p = [$1
p...$

|Vξ|
p] Multinomial parameters of the language model for participanttype p

Latent Variables
τ d = [τ1

d , ..., τ
E
d] realized eventtypes in ESD d

κd,i = [κd,i1 , ..., κd,iP] realized participanttypes in event i such that τ d,i = 1 in ESD d
πd event ordering of ESD d

vd = [v1
d, ...v

E−1
d] inversion count representation of event ordering of ESD d

ηe = [η1
e , ..., η

|Vη|
e] parameter vector sampled from multivariate gaussian N(Ση, 0) for event

type e

ξp = [ξ1
p, ..., ξ

|Vξ|
p] parameter vector sampled from multivariate gaussian N(Σξ, 0) for event

type p
Observable Variables

wd,i realization of event i in ESD d

wj
d,i realization of participant j in event i in ESD d

Vη event vocabulary
Vξ participant vocabulary

Table 4.1: Overview over the notation we use in the description of the model and inference algorithm.

4.2. MODEL OVERVIEW 25

tion corresponds to one noun phrase as identi�ed automatically by a dependency
parser (cf. Regneri et al. (2011)). The event description now consists of two
parts: (1) a bag of participant descriptions κi,n, where each participant de-
scription corresponds to one noun phrase, and (2) the remainder of the original
phrase τi,n, which corresponds to a verb phrase lacking its arguments. For
illustration, please consider the following example:

di,n = �put pasta into boiling water�
τi,n = �put into�
κi,n = {�pasta�, �boiling water�}

Given a corpus of ESDs in the format de�ned above, our model labels each
ESD di by assigning each event description τi,n exactly one event type τi,n = e,
where e ∈ {1, ..., E}. Each participant description j in the bag of participant de-
scriptions is assigned exactly one participant type κi,nj = p, where p ∈ {1, ..., P}.

4.2 Model Overview

We de�ne our generative model of script knowledge by deciding, for each hidden
variable in our model, for the kind of distribution the hidden variable is drawn
from. We describe and justify our choice of distributions in this section, before
we formally describe the generative story of how an ESD is be generated on the
basis of these distributions in the following section.

Our model includes three types of latent variables (1) event types, (2) par-
ticipant types, and (3) orderings of event types. We assume that the underly-
ing structure of an observed corpus of scenario-speci�c ESDs can be explained
through these three types of latent labels. In order to be able to relate latent
labels to observable data, namely words, we need to de�ne one language model
for each event type e and each participant type p.

Event Types We model event types using Binomial distributions. For each
event type e in our model, we de�ne a Binomial distribution Binomial(θe),
where θe corresponds to the probability with which an event type is realized in
an ESD. One advantage of this modeling decision is that it naturally explains
optional events. Taking the example of the Eating in a restaurant scenario,
we could model the optional event type �complaining about the food� with a
Binomial distribution with a low realization probability as parameter. This
would account for the observation that some ESDs for this scenario contain the
mentioned event type, while most ESDs do not.

Participant Types We model participant types through a set of Binomial
distributions Binomial(ϕep), each with a realization probability ϕep specifying
how likely it is to observe participant type p in event type e. Note that we
thus model participant type probabilities speci�cally for each event type. As an
example, we can model that the participant type �food� is likely to occur within
the event type �eat�, by assigning a high realization probability, while we can
assign a low realization probability to the participant type �bill� under the same
event type. It is also possible to model event types in which no participants occur

26 CHAPTER 4. A HIERARCHICAL BAYESIAN SCRIPT MODEL

at all, through a su�ciently low realization probability for each participant type
in the model under the event types.

Event Orderings We model event orderings using the Generalized Mallows
Model. Specifying the identity ordering σ = [1, 2, 3..., N] as a parameter of the
GMM, our model will have a preference towards labeling event types in an ESD
incrementally. However, we can specify a dispersion parameter ρe for each event
type e, which encodes the temporal �exibility of this speci�c event. Through
the GMM we are able to model event type-speci�c temporal �exibility. Taking
the Cooking pasta scenario as an example, we could specify that the event
type �boiling water� is strongly preferred to occur at its canonical position σe,
in the beginning of the ESD, by assigning a high value to its corresponding
dispersion parameter. The event type �graining the cheese�, which can occur
at any temporal position in the scenario, would be assigned a lower-valued
dispersion parameter, and divergence from its canonical position is thus only
moderately penalized.

Language Models We need to relate hidden variables, namely event types
and participant types, to the observable words. Given our corpus format as
described in Section 4.1, we can separate our vocabulary into an event vocab-
ulary Vη and a participant vocabulary Vξ. We then de�ne one language model
for each event type e and each participant type p as a Multinomial distribution
over the respective vocabulary: Mult(ϑe) for event types e and Mult($p) for
participant types p. Concretely, for each term in the event vocabulary v ∈ Vη,
the parameter ϑve speci�es the probability that term v occurs in an event de-
scription of event type e. Participant language model parameters are interpreted
equivalently.

4.3 The Generative Process

Given the speci�cation of our set of latent variables, and our respective
choice of distributions, we will now describe the formal generative process for
generating a document (ESD) d. The generative process is formalized in Figure
4.1. Our model is displayed as a plate diagram for a graphical overview in Figure
4.2.

Events We start by generating event types for ESD d. For this, we indepen-
dently draw for each event type e from Binomial(θe), with θe being the globally
de�ned realization probability of the respective event type. We thus obtain a
binary event vector τ d of length E, where τd,e = 1 if event type e is realized in
ESD d, and 0 otherwise.

Ordering We continue by generating an ordering in which the generated event
types will be realized in d. We draw an event ordering πd from GMM(ρ). We
represent our ordering as a vector or inversion counts vd (see Section 3.3).

Participants Given an ordered set of realized event types, we generate par-
ticipant types for each generated event i, such that τd,i = 1. We successively

4.3. THE GENERATIVE PROCESS 27

Generation of parameters

for event type e = 1, . . . , E do
θe ∼ Beta(α+, α−) [freq of event]

ϑe ∼ Dirichlet(γ) [event lang mod]

for participant type p = 1, . . . , P do
ϕep ∼ Beta(β+, β−) [freq of ptcpt]

for participant type p = 1, . . . , P do
$p ∼ Dirichlet(δ) [ptcpt lang mod]

for event type e = 1, . . . , E − 1 do
ρe ∼ GMM0(ρ0,ν0) [ordering params]

Generation of ESD d

for event type e = 1, . . . , E do
τe ∼ Binomial(θe) [realized events]

v ∼ GMM(ρ,ν) [inversion counts]

π ← sort(v, τ) [sort τ wrt v (deterministic)]

for event i from π s.th. τi=1 do
wi ∼Mult(ϑi) [event lexical unit]

for participant type p = 1, . . . , P do
κd,ip ∼ Binomial(ϕip) [realized ptcpts]

if κd,ip = 1 then
wp ∼Mult($p) [ptcpt lexical unit]

Figure 4.1: The generative story of the script model. Top: The generative story
for parameters. Bottom: The generative story for data, given the parameters.

consider each realized event type in the order speci�ed in πd. For each event
type i, we independently decide for each participant type p whether to generate
it or not, by drawing from Binomial(ϕpi). We thus obtain a binary participant
vector of length P for each realized event type i in d, κd,i where κd,ip = 1 if
participant type p is realized, and 0 otherwise.

Words Finally, we generate words for each realized event type and each real-
ized participant type. For each realized event type i, we decide on the number of
realizing words ni, and generate ni words by drawing ni times from Mult(ϑi).
Similarly, we generate words for each realized participant type j. In this case
we draw only once from the the language model Mult($j), for each realized
participant type j, because each participant description consists of one head
word only.

Note that we assume event type-speci�c realization probabilities for each par-
ticipant type p, ϕep. However, the model includes only one global language model
for each participant type, Mult($p). This allows us to model participants in
a globally coherent way, while still allowing for �exibility on the event type
level, basically learning sets of possible realizations for all argument slots of

28 CHAPTER 4. A HIERARCHICAL BAYESIAN SCRIPT MODEL

Figure 4.2: A plate diagram of the script model, illustrating the generative pro-
cess, and dependencies between the variables. An arrow from node a to node
b means that b depends on a. Arrows with a round head indicate determin-
istic computations. Shaded variables indicate manually speci�ed hyperpriors.
Observed variables (i.e. words) are indicated through double circles.

4.3. THE GENERATIVE PROCESS 29

each particular event type.

4.3.1 Generating Parameters from Prior Knowledge

We have not yet explained how we obtain the parameters of all Binomial distri-
butions, Multinomial distributions, and the GMM. Proposing a Bayesian model,
we draw those parameters themselves from a distribution over parameters, thus
accounting for the uncertainty involved when we decide for a particular param-
eterization. All parameterizations are global within one scenario type, and are
shared among all ESDs. The generative process for generation of parameters is
formalized in the top half of Figure 4.1, and can be described as follows.

Event realization parameters First, we generate the realization parameter
for each event type-speci�c Binomial distribution. In particular, for each event
type e we draw the parameter θe from Beta(α+, α−), the conjugate prior dis-
tribution to the Binomial distribution, with hyperparameters α+ and α− (see
Section 3.2.2). Through the choice of hyperparameters we can prefer sparsity in
our posterior event type distribution, which means that we prefer all realization
parameters to be either close to 0 or close to 1. This results in using only few
distinct event types in our posterior corpus labeling, thus encouraging clustering
similar descriptions together. We can achieve this by setting de�ning α+ << 1
and α− << 1 (cf. Figure 3.1).

Participant realization parameters Similarly, we generate realization pa-
rameters for event type-speci�c participant Binomial distributions, by drawing
the parameters ϕep from Beta(β+, β−). Again, we specify the hyperparameters
in a way that encourages sparsity in the posterior participant labelings, using
the same reasoning as described above.

Language Model Parameters We draw the language model parameters
for each event type e, ϑe, from Dirichlet(γ). The Dirichlet distribution is
the conjugate prior distribution to the Multinomial (see Section 3.2.2). The
hyperparameters γ in this case is a vector with dimensions corresponding to the
possible outcomes of the Multinomial, i.e. the terms in the event vocabulary.
By choosing a value γt << 1 for each term t in the vocabulary, we again can
encourage sparsity across our language models2. This means concretely, that
only few distinct terms are a likely realization for each event type e.

Equivalently, we de�ne the hyperparameters δ for our participant type lan-
guage models, and draw language model parameters $p for each participant
type p from Dirichlet(δ).

Ordering Parameters We draw our ordering parameters ρ from the conju-
gate prior distribution of the Generalized Mallows Model GMM0(ρ0, ν0). Using
hyperparameter ρ0, we compute a prior inversion count ve,0 for each event type
e, encoding a prior intuition about how much dispersion the model should tol-
erate for each event type e. The hyperparameter ν0 encodes the strength of our

2Assume, for simplicity, an uninformed prior for the moment, where each γv has the same
value. We will describe an augmentation of our model for language model prior determination
in Chapter 6.

30 CHAPTER 4. A HIERARCHICAL BAYESIAN SCRIPT MODEL

belief in this prior intuition (cf. Section 3.3). Practically, we want our model
to prefer event orderings similar to the identity ordering, such that we specify
very low prior inversion counts for all event types.

4.4 Summary

We have provided a description of the Bayesian script model, which takes a
corpus of scenario-speci�c event-sequence descriptions as input, and induces
clusters of equivalent event descriptions and equivalent participant descriptions.
The event clusters furthermore capture the underlying ordering of events in
the scenario. We described the formalized generative story to illustrate how
observable data relate to the hidden variables in our model.

Note that some fundamental simplifying assumptions are encoded in our
model. By realizing event types through one draw from each event type-speci�c
Binomial distribution, we assume that each event type can occur only once per
ESD. Similarly, by using event type-speci�c Binomials for modeling participant
type realization and drawing once from each Binomial, we assume that each
participant type can occur only once per realized event.

Furthermore, by drawing independently and successively from each event
type-speci�c Binomial Binomial(θe) and each event type-speci�c participant
Binomial Binomial(ϕep), we assume independence between event types in an
ESD, and between participant types in a realized event type. We thus generate
a bag of participants for a realized event, which implies that we do not include
any notion of the syntactic position - or the semantic role - of the individual
participants.

Finally, we draw realizing words independently from the respective event
language models ϑe. This means that we assume independence between words
within each particular realization of an event type, encoding the bag-of-words
assumption, which is a common choice in topic models. Since each participant
is realized by only one head word, this is not an issue in this component.

Chapter 5

Inference

In the previous chapter, we have described the architecture of the script model,
using the generative process for illustration. The generative process assumes
that we know all hidden parameters, and can generate data (ESDs) on this ba-
sis. However, the actual problem setting we are faced with is that we observe the
data, and want to learn the parameters of the distributions of the hidden vari-
ables from the data. In order to do this, we need to revert the generative story
and de�ne an inference procedure. We use Bayesian inference for formulating
the posterior distributions of all our hidden variables, and use Gibbs sampling
for obtaining approximate samples for those variables.

We will start by describing the full, joint posterior probability of all hidden
parameters given the data. We continue simplifying the inference process by (1)
utilizing the independence assumptions inherent in our model to make inference
more e�cient in Section 5.1, and (2) integrating over some hidden distributions
to reduce the state space from which we learn our hidden parameters in Section
5.2. We �nally de�ne the conditional posterior distributions of all remaining
parameters in the Gibbs sampling framework in Section 5.3.

5.1 The Full Posterior

In Bayesian modeling, we want to learn the joint probability of all variables in
the model, given the observable data. For our model, this amounts to (please
refer to Table 4.1 for the notation we use):

P (τ ,κ,v,θ,ϕ,ϑ,$,ρ;α+, α−, β+, β−,γ, δ, ρ0, ν0|D), (5.1)

where D stands for all our data, all variables left of the semicolon are our
hidden parameters, and everything right of the semicolon are the manually
optimized hyperparameters of the model, or the prior knowledge we de�ne.

According to the independence assumptions made in generative story, and
graphically shown in the plate diagram of our model in Figure 4.2, we can
simplify the joint distribution by factorizing it into independent components:

31

32 CHAPTER 5. INFERENCE

P (τ ,κ,v,θ,ϕ,ϑ,$,ρ;α+, α−, β+, β−,γ, δ, ρ0, ν0|D) (5.2)

=

E∏
e=1

[
P (θe|α+, α−)P (ρe|ρ0, ν0)

P∏
p=1

[
P (ϕpe|β+, β−)

]]
(5.3)

E∏
e=1

[
P (ϑe|γe)

] P∏
p=1

[
P ($p|δp)

]
(5.4)

D∏
d=1

[
P (vd|ρ,κd)P (τ d|θ,vd,κ

d)
∏

i:τd,i=1

[
P (wd,i|ϑi)P (κd,i|ϕi) (5.5)

∏
j:κd,ij =1

[
P (wj

d,i|$j)
]]]

(5.6)

The term 5.3 in the above equation corresponds to the event type/partici-
pant type component and the GMM component in the plate diagram in Figure
4.2. Term 5.4 corresponds to the language model component, terms 5.5 � 5.6
correspond to the ESD generation component.

We use conjugate prior distributions over the distributions of our hidden
variables. This allows us to integrate out the Binomial parameters, specifying
event realization probability and participant realization probability for each
type, θ and ϕ, and the Multinomial parameters, specifying the type speci�c
language model parameters ϑ and ϕ. In the following section, we will describe
the integration process of the mentioned parameter distributions. Subsequently,
we de�ne the simpli�ed posterior distribution for each hidden variable in the
reduced sampling space.

5.2 Integrating out Parameter Distributions

In this section, we describe the process of integrating out the Binomial event
type realization parameters θ and participant type realization parameters ϕ,
and the Multinomial language model parameters ϑ and $. For each type of
distribution, we go through one derivation in detail, taking θ and ϑ as respective
examples.

Intuitively, by summing (or integrating) over the parameterizations of the
Binomial and Multinomial distributions, we incorporate all possible values the
respective parameters can take in our model, without representing them explic-
itly. In fact, the probability of a particular parameterization can be represented
purely on the basis of the respective hyperparameters, and the su�cient statis-
tics in the data (Bishop, 2006). The su�cient statistics in our case are simply
the counts of particular observations (words occuring with particular event type
labels and participant type labels) in our corpus, as labeled by the model. Please
refer to Table 5.2 for an overview over the counts relevant to our posterior dis-
tributions, and an explanation for the notation we use to encode the su�cient
statistics. Just like we sampled the Binomial and Multinomial parameters from
their conjugate Prior distribution shaped by our choice of hyperparameters be-
fore, after the parameters are integrated out the su�cient statistics will be
modi�ed, or shaped, by the hyperparameters encoding our prior intuitions.

5.2. INTEGRATING OUT PARAMETER DISTRIBUTIONS 33

Symbol Explanation

N Number of ESDs in the corpus

N ·
′

· Any count excluding the values of the currently resampled variable
Relevant Counts for Event Binomials

Ne
· Number of times event type e is realized

N ē
· Number of times event type e is not realized

Relevant Counts for Participant Binomials
Ne,p
· Number of times participant type p is realized under event type e

Ne,p̄
· Number of times event type e is realized without participant type p
Relevant Counts for Word Multinomials (language models)

Ne
v Number of times term v = 1..|Vη| in the event vocabulary occurs in

event type e
Np
v Number of times term v = 1..|Vξ| in the participant vocabulary oc-

curs in participant type p

Table 5.1: Notation for the su�cient statistics, relevant for the di�erent kind of
parameter distributions we model.

On a high level, the basic integration procedure can be described as follows:

1. Identify all terms in Equation 5.2 that are a�ected by the parameters to
be integrated over

2. Remove potential conditioning factors that are not directly in�uenced by
the parameters

3. Go through the integration process

4. Obtain a simpli�ed equation which is parameterized only by su�cient
statistics and hyperparameters

Integrating out Binomial parameters θ and ϕ

We will describe the process of integrating over the parameters of a Binomial
distribution, which are in turn drawn from its conjugate prior distribution, the
Beta distribution. The resulting term is called a Beta-Binomial distribution
(BBM), which is parameterized by counts of observations in the data and the
parameters of the Beta distribution. The parameters of the Binomial distribu-
tion will not be mentioned in the �nal de�nition.

We exemplify the process taking the Binomial event type realization pa-
rameters θ. The relevant terms from Equation 5.2 which are a�ected by θ are
P (θ|α+, α−) and

∏
d P (τ d|θ,vd,κd). The conditioning factors vd and κd can

be ignored in the derivation below, since they do not depend on θ. Below, we
focus on one document only, which allows us to temporarily drop the index d.

34 CHAPTER 5. INFERENCE

∫
θ

E∏
e=1

P (θe|α+, α−)P (τe|θe)dθ (5.7)

=

E∏
e=1

∫
θe

Γ(α+ + α−)

Γ(α+)Γ(α−)
θα

+−1
e (1− θe)α

−−1θ
Ne·
e (1− θe)(N ē·)dθe (5.8)

=

E∏
e=1

∫
θe

Γ(α+ + α−)

Γ(α+)Γ(α−)
θ
Ne· +α+−1
e (1− θe)(N ē·)+α−−1dθe (5.9)

=

E∏
e=1

Γ(α+ + α−)

Γ(α+)Γ(α−)

Γ(Ne
· + α+)Γ(N ē

· + α−)

Γ(N + α+ + α−)
× (5.10)∫

θe

Γ(N + α+ + α−)

Γ(Ne
· + α+)Γ(N ē

· + α−)
θ
Ne· +α+−1
e (1− θe)(N ē·)+α−−1dθe

=

E∏
e=1

Γ(α+ + α−)

Γ(α+)Γ(α−)

Γ(Ne
· + α+)Γ(N ē

· + α−)

Γ(N + α+ + α−)
(5.11)

∝
E∏
e=1

Γ(Ne
· + α+)Γ(N ē

· + α−)

Γ(N + α+ + α−)
(5.12)

We start by factorizing the distribution into independent components, speci�c
to each event type e in term 5.7, and integrate over possible values for each
θe independently. We continue by substituting the de�nitions of the Binomial
distribution and the Beta distribution in term 5.81, and then proceed with the
integration procedure2. The realization probability of a particular event type
e is �nally represented by the Beta-Binomial distribution, as de�ned in term
5.11. During learning, we will sample from the non-normalized Beta-Binomial,
as given in term 5.12, which we will call BBMe

Γ(Ne
· + α+)Γ(N ē

· + α−)

Γ(N + α+ + α−)
BBMe. (5.13)

Intuitively, the posterior probability generating an event type e given the
data and the hyperparameters is proportional to the number of times e was
observed/not observed as a label in the data (Ne

· /N
ē
·) plus our prior intuition

about how often event types should be realized (α+) and not realized (α−), as
encoded in the hyperparameters.

Analogously, we can integrate out the parameters of the event type-speci�c
participant distributions ϕpe. By considering only the relevant terms from Equa-
tion 5.2, the Binomial parameters ϕ can be integrated out using the same pro-
cedure as above.

1The Gamma function Γ(·) is part of the de�nition of the Beta distribution, and is an
extension of the factorial to real numbers.

2

• In term 5.10 we add the term
[

Γ(Ne· +α+)Γ(N ē· +α−)

Γ(N+α++α−)

Γ(N+α++α−)

Γ(Ne· +α+)Γ(N ē· +α−)

]
= 1.

• To get from term 5.10 to term 5.11 we use the fact that[∫
θe

Γ(N+α++α−)

Γ(Ne· +α+)Γ(N ē· +α−)
θ
Ne· +α+−1
e (1− θe)(N ē·)+α−−1dθe

]
= 1

5.2. INTEGRATING OUT PARAMETER DISTRIBUTIONS 35

∫
ϕ

E∏
e=1

P∏
p=1

P (ϕpe|β+, β−)P (κep|ϕpe)dϕ (5.14)

∝
E∏
e=1

P∏
p=1

Γ(Ne,p
· + β+)Γ(Ne,p̄

· + β−)

Γ(Ne
· + β+ + β−)

(5.15)

The realization probability of a participant type p in an event type e is now
represented using the Beta-Binomial distribution, which we will call BBMe

p

Γ(Ne,p
· + β+)Γ(Ne,p̄

· + β−)

Γ(Ne
· + β+ + β−)

BBMe
p (5.16)

Integrating out Multinomial Parameters ϑ and $

The process described above can be generalized straightforwardly to the Multi-
nomial case. We will now integrate over Multinomial parameters which are
drawn from their conjugate prior distribution, the Dirichlet distribution. The
resulting term is called a Dirichlet-Compound-Multinomial distribution (DCM),
which is the multinomial generalization of the Beta-Binomial distribution, and is
analogously characterized solely by the su�cient statistics in the data and the
Dirichlet parameters. We go through an example, integrating over the event
type language model parameters ϑ. The relevant terms from Equation 5.2 are∏
e P (ϑe|γe) and

∏
d

∏
e P (wd,e|ϑi). We will further need to iterate over all

terms v in our event vocabulary Vη.

∫
ϑ

E∏
e=1

P (ϑe|γe)
D∏
d=1

P (wd,e|ϑe)dϑ (5.17)

=

E∏
e=1

∫
ϑe

P (ϑe|γe)
D∏
d=1

P (wd,e|ϑe)dϑe (5.18)

=

E∏
e=1

∫
ϑe

Γ(
∑
v γ

v
e)∏

v Γ(γve)

∏
v

ϑN
e
v

e,vϑ
γve−1
e,v dϑe (5.19)

=

E∏
e=1

∫
ϑe

Γ(
∑
v γ

v
e)∏

v Γ(γve)

∏
v

ϑN
e
v+γve−1

e,v dϑe (5.20)

=

E∏
e=1

Γ(
∑
v γ

v
e)∏

v Γ(γve)

∏
v Γ(Ne

v + γve)

Γ(
∑
v N

e
v + γve)

× (5.21)∫
ϑe

Γ(
∑
v N

e
v + γve)∏

v Γ(Ne
v + γve)

∏
v

ϑN
e
v+γve−1

e,v dϑe

=

E∏
e=1

Γ(
∑
v γ

v
e)∏

v Γ(γve)

∏
v Γ(Ne

v + γve)

Γ(
∑
v N

e
v + γve)

(5.22)

∝
E∏
e=1

∏
v Γ(Ne

v + γve)

Γ(
∑
v N

e
v + γve)

(5.23)

36 CHAPTER 5. INFERENCE

The likelihood of observed words w under the current event labeling e is
now computed using the Dirichlet-Compound-Multinomial, which we will call
DCM(e;γe) ∏|Vη|

v=1 Γ(Ne
v + γve)

Γ(
∑|Vη|
v=1N

e
v + γve)

DCM(e;γe) (5.24)

Exactly analogously, we de�ne the probability of an observed participant
description consisting of words from the participant vocabulary Vξ under the
participant label p as DCM(p; δp)∏|Vξ|

v=1 Γ(Np
v + δvp)

Γ(
∑|Vξ|
v=1N

p
v + δvp)

DCM(p; δp) (5.25)

Again, our �nal formula have very intuitive interpretations: The probability
of all our observed event descriptions w given their current labeling is propor-
tional to the number of times each term v ∈ Vη was labeled as each event type
e, plus our prior intuition about how probable term v should be under label e,
as encoded in our hyperparameters. The same holds for observed participant
descriptions from v ∈ Vξ under all participant labels p.

The Simpli�ed Posterior

After the integration process, all Binomial parameters and Multinomial param-
eters disappear from the full posterior as de�ned in Equation 5.2. While we
can integrate out the parameters of the Multinomials and Binomials, this is not
possible for the parameters of the Generalized Mallows Model ρ. Consequently,
we will explicitly need to sample event type-speci�c GMM parameters from the
conjugate prior distribution of the GMM

∏E
e ρe ∼ GMM0(ρ0, ν0), and we need

to sample an event ordering for each document
∏
d vd ∼ GMM(ρ). The full

posterior from Equation 5.2 can now be simpli�ed to

P (τ ,κ,v,ρ;α+, α−, β+, β−,γ, δ, ρ0, ν0|D)

∝
∏
e

Γ(Ne
· + α+)Γ(N ē

· + α−)

Γ(N + α+ + α−)

∏
p

Γ(Ne,p
· + β+)Γ(Ne,p̄

· + β−)

Γ(Ne
· + β+ + β−)

∏
e

∏|Vη|
w=1 Γ(Ne

w + γwe)

Γ(
∑|Vη|
w=1N

e
w + γwe)

∏
p

∏|Vξ|
v=1 Γ(Np

v + δvp)

Γ(
∑|Vξ|
v=1N

p
v + δvp)

P (ρ|ρ0, ν0)P (v|ρ). (5.26)

Replacing the explicit formula with the notation introduced above, we get

P (τ ,κ,v,ρ;α+, α−, β+, β−,γ, δ, ρ0, ν0|D)

∝
∏
e

[
BBMe

∏
p

[
BBMe

p

]]
∏
e

[
DCM(e;γe)

]∏
p

[
DCM(p; δp)

]
GMM0 GMM. (5.27)

5.3. DEFINING THE RESAMPLING STEPS 37

5.3 De�ning the Resampling Steps

In the previous section we de�ned and simpli�ed the joint posterior distribution
of all hidden variables in our model, given the data. Since it is intractable to
sample from this distribution directly, we will use Gibbs sampling for approxi-
mate inference.

Gibbs sampling breaks the joint distribution down into independent factors
for each hidden variable. Each hidden variable is then resampled in turn con-
ditioned on the current valued of all other hidden variables, but excluding the
previous value of the variable which is currently resampled.

In this section, we will de�ne a posterior distribution for each of the hidden
variables τ ,κ,v,ρ in our model. Note that whenever a value of one particular
hidden variable is updated, this will a�ect only a subset of the other types
hidden variables. We will consider only those terms which directly a�ect the
posterior distribution over possible values for each hidden variable.

For each type of hidden variable we will compute a posterior probability
distribution over the possible values the variable can take. We compute the
posterior probability under the hypothesis that the variable takes a particular
value, by temporarily assigning the variable this value. The su�cient statistics
of our data will thus change with each hypothesis. Table 5.2 summarizes our
notation of the su�cient statistics. Nvar

var stands for the counts of a particular
observation in our data. A horizontal bar over any superscript means the number
of times that observation was not present in a document (the failure case for the
Binomial distributions). A dot in any variable position means the sum over all
possible values is taken. The apostrophe means that the label of the currently
resampled variable is excluded from the counts.

5.3.1 Computing the Document Likelihood

We start by de�ning the document likelihood, which is the probability of the
observed words in a document d given the current labeling of the data as assigned
by the model. We need the document likelihood as a function of our parameters
as a factor of our posterior distributions for most hidden variables.

Given the de�nition of Gibbs resampling steps, the probability of a particular
value for a hidden variable (words wd in document d in the de�nition below) is
conditioned on the current values of all other hidden variables except the label
of the variable we are currently resampling (indicated by w−d)

P (wd|w−d, τ ,κ,v,γ, δ)

∝
E∏
e

∏|Vη|
v Γ(Ne′

v + γev)

Γ(
∑
v N

e′
v + γev)

P∏
p

∏|Vξ|
v Γ(Np′

v + δpv)

Γ(
∑
v N

p′
v + δpv)

=
∏
e

DCM(e;γe)
∏
p

DCM(p; δp). (5.28)

Note that the document likelihood consists of two independent factors, one
for event word likelihood, and one for participant word likelihood. Depending
on which type of hidden variable will be resampled, we will only need to consider
one of these factors in the following de�nitions, since the other one will not be
a�ected by the change.

38 CHAPTER 5. INFERENCE

5.3.2 Resampling the Hidden Variables

We continue by de�ning the Gibbs update steps for each hidden variable in
our model. Most posteriors will consist of two parts: (1) the probability of the
parameters, and (2) the likelihood of the observed data given the parameters as
de�ned in 5.3.1.

Resampling Participant Types

We resample the label of the participant j within event i, in ESD d. We create
a distribution over all possible labelings l, by temporarily assigning j to the
hypothesized label l and computing the following posterior under this assump-
tion3:

P (κjd,i = l|κ−d,i,j , τ ,w−d,i,j , β+, β−, δ)

=P (κd,ij = l|...)P (wj
d,i|κ

d,i
j = l, ...)

∝
E∏
e

P∏
p

Γ(Ne,p′

· + β+)Γ(Ne,p̄′

· + β−)

Γ(Ne
· + β+ + β−)

×DCM(p; δp)

∝
E∏
e

P∏
p

BBMp
e ×DCM(p; δp). (5.29)

The �rst factor of the equation stands for the probability of our parameters
given the proposed label l, and it favors participant types l which have been
observed frequently with event type i in the whole corpus. The second factor is
the document likelihood given the proposed label l, and favors participant types
which have occurred often with the observed words wj

d,i over the whole corpus.

We resample participant j from the resulting multinomial distribution over
all possible labels, and update j's label, and all relevant su�cient statistics,
accordingly.

Resampling Event Types

We resample the event type of event i in ESD d. Resampling an event type
a�ects the event BBM and the participant BBM, since event-participant co-
occurrence will change. We create a probability distribution over all possible
labelings k, by temporarily assigning the hypothesized label k to event i and

3This means that the counts Ne,p′ and Ne,p̄′ change whenever l == p and i == e. Equiv-
alently, the DCM components for hypothesized label l and j's old label change because the
word-participant type co-occurrence counts change with each hypothesis. The same reasoning
applies to all BBMs and DCMs whenever a hypothesis for an update of a hidden variable
a�ects the current corpus labeling.

5.3. DEFINING THE RESAMPLING STEPS 39

computing the following posterior under this assumption:

P (τd,i = k|τ−d,i,κ−d,i,·,w−d,iα+, α−, β+, β−,γ)

=P (τd,i = k|...)P (κd,i|τd,i = k, ...)P (wd,i|τd,i = k, ...)

∝
E∏
e

Γ(Nk′ + α+)Γ(N k̄′ + α−)

Γ(N + α+ + α−)
×

P∏
p

BBMp
e ×DCM(e,γe)

∝
E∏
e

BBMe ×
P∏
p

BBMp
e ×DCM(e,γe) (5.30)

We can interpret the three factors as, given our current corpus labeling,
favoring generally frequently observed event types, favoring event types which
co-occurred often with the participant types realized in κd,i, and favoring event
types with which the observed words wd,i have occurred often over the whole
corpus, respectively.

We sample the new label for event i from the resulting multinomial over
all possible labels k, and update i's label and the relevant su�cient statistics
accordingly.

Resampling Ordering

Since ordering in the GMM is parameterized individually for each element by
providing element-speci�c inversion counts, we can resample the position of each
event type in a document d individually. We successively and independently
resample the inversion count of each event type e ∈ {1..E − 1}4 for document
d:

P (vd,e = v|v−d,e, τ ,κ−d,w−d, ρe,γ)

=P (vd,e = v|ρe)× P (κd,·|vd,e = v, ...)P (wd,·|vd,e = v, ...)

∝GMMe(v; ρe)×
∏
e

∏
p

BBMp
e ×DCM(e;γe) (5.31)

where GMMe is evaluated using Equation 3.16. We compute a probability
distribution over all possible values v = {0..E − e}5 and resample the new
inversion count for event type e from the resulting distribution.

Note that a full ordering over all event types is sampled for every document.
It is irrelevant at this point which event types are realized in the document and
which are not.

When resampling an event type ordering, the event realizing words in the
document might be assigned di�erent labels, since the order of the realized event
types might change, and the event-participant co-occurrences might change for
the same reason. Hence we consider three factors in the posterior distribution,
as de�ned above. While the GMM factor generally favors low event inversion
counts (attenuated by the dispersion parameter ρe), the Beta-Binomial factor
BBMp

e favors orderings which lead to globally frequently observed event type-

4Recall that, given the identity ordering as canonical ordering, the inversion count for event
type E is always 0.

5Given the identity ordering as canonical ordering of E elements, at most E − e elements
i such that i > e can possibly occur before each element e.

40 CHAPTER 5. INFERENCE

participant type co-occurrences in d. The document likelihood, as before, is
maximized when the proposed event labeling for each realized event type i in
d has been observed frequently with the observed words wi,d over the whole
corpus.

Resampling GMM parameters

We resample the GMM parameter vector ρ element-wise from the GMM prior
distribution GMM0(ve,0, ν0). The parameter ν0, the number of pseudo trials is
computed as

ν0 = N + ν0 (5.32)

The number of previously encountered inversions for event type e is computed
individually for each event type

ve,0 =

∑
d vd,e + ve,0ν0

N + ν0
, (5.33)

where N is the number of documents in our corpus. We resample

P (ρt+1
e |...) ∝ GMM0

(
ρte; ν0, ve,0

)
, (5.34)

where we use Equation 3.17 to evaluate GMM0, and ρ
t
e is the previous value of

parameter ρe. In contrast to the previously de�ned posteriors, which are cat-
egorical distributions over possible labelings or inversion counts, the resulting
posterior distribution over possible values for ρe is continuous and not straight-
forward to sample from, since the normalizing constant is unknown. We use
slice sampling, as de�ned in Section 3.5.2 for sampling a new value from the
posterior distribution.

Note that resampling GMM parameters does not have a direct in�uence on
our corpus labeling, which is why there is no document likelihood factor in the
posterior equation.

5.4 Posterior Regularization

Regneri et al. (2011) encode a �one sense per participant� constraint in their
model for participant clustering. This means that they assign all token-identical
participant descriptions the same participant type. We integrate this constraint
into our model as well, through posterior regularization.

Generally, we aim to learn sparse posterior distributions, by specifying hy-
perparameters which encourage parameterizations which result in sparse hidden
variable distributions. Graça et al. (2009) propose a form of posterior regu-
larization which encourages sparsity directly in the posterior distribution, by
specifying linear constraints on the posterior distribution of each hidden vari-
able z ∈ φ. A desired distribution q(z) is de�ned for each hidden variable, and
the original objective, maximizing the log likelihood p(D|φ), is regularized as
follows

p(D|φ) + ε ∗
∑
z∈φ

KL
(
q(z)||pφ(z)

)
, (5.35)

5.5. SUMMARY 41

where KL
(
q(z)||pφ(z)

)
is the Kullback-Leibler divergence between the desired

distribution q(z) of a hidden variable z, and its actual distribution pφ(z). ε is
a parameter for the in�uence of the regularization component. A small KL-
distance will minimize the penalization term, and thus parameter distributions
close to the desired distributions will be preferred. By specifying a sparse set of
desired distributions Qφ the posterior distributions of each variable will tend to
be sparse too.

While Graça et al introduce their posterior regularization technique within
the framework of variational inference, we adapt the idea and re-formulate it
for the Bayesian sampling setting. We can de�ne our notion of sparse distribu-
tions as distributions which concentrate their probability mass over one single
component. We can thus reformulate the KL-distance in the above formula as:

arg max
l

P (z = l|D). (5.36)

Here, we are only interested in one particular z ∈ φ, namely labels of participant
words with types p ∈ {1...P}, given observed words wp. Of the posterior distri-
butions de�ned above, only the distribution over participant types is in�uenced
by this factor. We will regularize this posterior distribution, by taking into ac-
count in our Gibbs updating step how the regularization term in 5.36 changes
given a hypothesized participant labeling. We use the regularized objective as
the posterior probability distribution over participant labels, and modify term
5.29 accordingly:

P (κd,ij = l|...) ∝
E∏
e

P∏
p

BBMp
e ×DCM(p; δp)× P (κd,ij = l|wjd,i)

ε. (5.37)

The scaling factor makes the posterior distribution sharper, as it boosts the
probability of labels which are already likely under the distribution. Eventually,
all occurences of one term t in the vocabulary will be labeled as the same
participant type l. Once the model has converged to this situation, with a high
value for ε, we practically take the maximum a posteriori, the most likely, label
for t.

Coming back to our motivation, we include posterior regularization in our
model, in order to trigger, for each participant-realizing term in the vocabulary,
a very strong tendency to assign all mentions of that term the same participant
type. This essentially encodes the �one sense per participant� constraint. We
will start with a low value for ε in order to ensure �exibility in the early learning
phase, e.g. to allow assignment of di�erent terms to the same participant type,
and raise its value continuously during the inference process.

5.5 Summary

In this chapter, we derived an inference algorithm for the script model intro-
duced in Chapter 4. We reversed the generative story, and made the indepen-
dence assumptions included in the generative story explicit. Using the indepen-
dence assumptions, we factorized the joint probability of all hidden variables in
our model into independent components. We integrated over the parameters
of the Binomial distributions and the Multinomial distributions in our model.

42 CHAPTER 5. INFERENCE

Let us de�ne the remaining set of hidden variables φ = [τ ,κ,v,ρ], and the
hyperparameters ψ = [α+, α−, β+, β−,γ, δ, ρ0,ν0].

Our general Bayesian procedure of estimating the probability of our param-
eters φ from prior belief P (φ|ψ) and the likelihood of the data P (D|φ):

P (φ;ψ|D) ∝ P (φ|ψ)P (D|φ)∫
φ
P (D|φ)P (φ)dφ

. (5.38)

The computation of the posterior above, using the joint probability of all
parameters φ , is intractable. In particular, the integration over all possible
parameters in the denominator above is not possible to compute. We thus
use Gibbs sampling for approximate inference. We de�ned separate resampling
steps for every hidden variable in φ, under the constraints imposed by the
update procedure in the Gibbs sampler. Using these de�nitions, we can de�ne a
posterior distribution for each hidden variable over all possible values it can take,
and update the label from this distribution. In the actual learning procedure we
will repeatedly iterate over all hidden variables in φ and update them in turn
conditioned on all other hidden variables φ′ until the sampler converges.

We also brie�y introduced the posterior regularization framework. We use
posterior regularization in order to impose additional constraints on our partic-
ipant type-speci�c language models, which encourage all mentions of a term in
the participant vocabulary to be labeled with the same participant type.

In the next chapter, we will present an extension to the model, and the
corresponding changes to the inference procedure.

Chapter 6

Extending the Script Model

with Informed Prior

Knowledge

In this chapter, we present an extension to the proposed script model. One
challenge we are faced with is the very limited size of the corpora available for
training and testing. For completely unsupervised learning settings, like the
one presented, su�cient amount of data is inevitable for the model to induce
underlying structure from the data, without any external cues. We introduce a
way of alleviating this problem by including knowledge about word similarities,
which will guide the inference process, in a completely unsupervised way.

Regneri et al. (2011), who we follow closely in our task de�nition, uses
WordNet-based semantic similarity, in particular Lin's similarity measure (Lin,
1998), as one factor in their model for participant clustering. We will also use
WordNet-based similarity scores, but obtain them in a di�erent way, because
the way we integrate prior knowledge into our model poses restrictions on the
way similarity scores can be computed, as we explain below.

We start by describing how we obtain semantic knowledge in Section 6.1, and
continue by formalizing the modi�ed generative story in Section 6.2. Finally,
we extend the inference procedure by de�ning posterior probability distributions
for the additional hidden variables in Section 6.3.

6.1 De�ning the Prior Knowledge

In order to alleviate the problem of a limited amount of available data, we aug-
ment our model by providing it with automatically induced external cues to
guide the inference process. In particular, we inject knowledge of semantic sim-
ilarity, automatically obtained from WordNet (Fellbaum, 1998), into our model.
From this knowledge we learn informed prior parameters for our language mod-
els.

Intuitively, we would like to be able to �tie� the probabilities of semantically
similar words together, within each cluster we infer. Returning to the example of
the Cooking Pasta scenario, we would like words similar to �cook� and �boil� to

43

44 CHAPTER 6. INFORMED PRIOR KNOWLEDGE

Food Order Table Counter Menu Drink Board Meal
Food 13 0 3 0 3 3 3 2
Order 0 32 0 0 0 0 0 0
Table 3 0 20 6 3 0 8 0

Counter 0 0 6 22 0 0 0 0
Menu 3 0 3 0 15 0 3 0
Drink 3 0 0 0 0 13 0 0
Board 3 0 8 0 3 0 25 0
Meal 2 0 0 0 0 0 0 6

Table 6.1: Excerpt from the participant covariance matrix Σξ of the Fastfood
scenario, based on the most frequent terms in the vocabulary.

have a high realization probability in a cluster corresponding to the event type
�boiling water�, while we want the same set of words to have a low probability
in most other clusters.

The basic Dirichlet distribution assumes independence between the compo-
nents of the parameterizations it de�nes a distribution over. In our case, this
leads to the unrealistic assumption, that the realization probabilities of all terms
in the vocabulary are independent of each other within each cluster. We will
relax this assumption by introducing correlation among parameters for seman-
tically similar terms. We use the variance-covariance matrix of a multivariate
Normal distribution to encode these correlations.

6.1.1 Obtaining Word Similarities from WordNet

We use WordNet to obtain a semantic similarity score for each pair of words
in our vocabulary. Since we work on limited domains, we de�ne a subset of
WordNet based on which we compute the similarity scores. The sub domain is
de�ned as all WordNet synsets that any word in our vocabulary is a member of,
plus the hypernym sets of all these synsets. We create a feature vector for each
term vi, f(vi), with dimensions n corresponding to the synsets of our WordNet
sub domain, as follows:

f(vi)n =

{
1 if any sense of vi ∈ synset n

0 otherwise

The similarity of two terms vi and vj is then de�ned as the dot product of their
respective feature vectors f(vi) · f(vj).

Recall that we treat the event vocabulary Vη and the participant vocabu-
lary Vξ completely separately, such that we will obtain two independent sets
of similarity scores. We use the two sets to de�ne the respective covariance
matrices Ση, capturing similarity between event-describing terms, and Σξ, cap-
turing similarity between participant-describing terms. They have Vη and Vξ
dimensions, corresponding to the number of terms in the event and participant
vocabulary, respectively. Each cell (i, j) contains the similarity between terms
vi and vj as de�ned above. Tables 6.1 and 6.2 show two example excerpts of the
respective covariance matrix for events and participants for the Eating in a

fastfood restaurant scenario. It can be seen that the event term similarity

6.2. THE MODIFIED GENERATIVE PROCESS 45

eat order pay wait walk go make
eat 26 0 5 0 0 0 0
order 0 40 0 0 0 0 1
pay 5 0 66 0 0 17 25
wait 0 0 0 19 0 10 0
walk 0 0 0 0 31 12 4
go 0 0 17 10 12 124 29

make 0 1 25 0 4 29 202

Table 6.2: Excerpt from the event covariance matrix Ση of the Fastfood sce-
nario, based on the most frequent terms in the vocabulary.

scores are much denser than the participant term similarity scores, especially
for very generic verbs which have many senses, such as �make� or �go�.

We will use each matrix as the variance-covariance matrix of a multivariate
normal distribution. Covariance matrices of Multivariate Normal distributions
need to be positive semide�nite. Computing the value of each cell (i, j) as
the dot product of the feature vectors of elements i and j guarantees positive
semide�niteness of the resulting matrix.

6.2 The Modi�ed Generative Process

In order to relax the independence assumption inherent in the Dirichlet distri-
bution, we add another level to the model hierarchy: instead of specifying priors
Dirichlet(γ) and Dirichlet(δ) directly, we sample them for each event type e
and participant type p from a Logistic Normal distribution (see Section 3.4).

Since the event vocabulary Vη and participant vocabulary Vξ are completely
separate in our model, the construction of the language model priors works
independently, but equivalently, for the event and the participant component.
For illustration, we will describe the modi�ed generative process for event type
language models below. A plate diagram representation of the full model is dis-
played in Figure 6.1, and the formalized generative story of the model extension
is displayed in Figure 6.2.

In the extended model version each event type e is assigned an individual
associated Dirichlet prior vector γe. The dimensions of γe correspond to the
terms in the event vocabulary v ∈ Vη, such that for each term an individual
parameter (pseudo count) is constructed for each event type. The resulting
priors are thus non-symmetric, or informed.

The prior vectors γ are generated as follows. For each event type e, we
draw a parameter vector ηe from the logistic normal ηe ∼ N(Ση,µ) with mean
µ = 0. The covariance matrix Ση is de�ned as described in Section 6.1.1, and is
globally de�ned across all event types e. The dimensions of ηe correspond to the
words of the event vocabulary, and the correlations among words encoded in Ση
are re�ected in ηe. The vector ηe is normalized using logistic transformation,
to yield the Dirichlet parameter vector γe.

The Dirichlet parameter vectors δp are generated with the exact same pro-
cedure from N(Σξ, 0), by �rst sampling ξp ∼ N(Σξ, 0) for each participant type
p, and subsequent normalization to yield δp. Σξ is the globally de�ned co-

46 CHAPTER 6. INFORMED PRIOR KNOWLEDGE

Figure 6.1: The plate diagram for the full script model. Dirichlet parameters for
event language models and participant language models are now drawn from the
type-speci�c Multivariate Normal distribution. Shaded circles indicated manu-
ally optimized hyperparameters. Double circles indicate observed variables, and
round arrow heads indicate deterministic computations.

variance matrix encoding semantic similarity between words in the participant
vocabulary Vξ.

6.3 The Modi�ed Inference Procedure

First note, that the inference procedure as described in the previous chapter
stays exactly the same. The only di�erence is that the Dirichlet parameters γe
and δp are not manually speci�ed, but learnt. After extending the model as
described above, there are two additional sets of hidden variables in the model,
namely parameter vectors for the Dirichlet parameters for each event type e,
ηe, and for each participant type p, ξp. We will explain the inference procedure
taking the event prior parameters as an example. The update procedure for the
participant prior parameters is exactly equivalent. We resample the vectors for
each event type as follows:

P (ηe|Ση,w) ∝ N(ηe|Ση)DCM(e; (γe ← ηe)) (6.1)

6.3. THE MODIFIED INFERENCE PROCEDURE 47

Generation of parameters ϑe and $p

for event type e = 1, . . . , E do
ηe ∼ N(Ση, 0)
for all words w do
γew=exp(ηew)/

∑
w′exp(ηew′) [Dir prior]

ϑe ∼ Dirichlet(γe) [event lang mod]

for participant type p = 1, . . . , P do
ξp ∼ N(Σξ, 0)
for all words w do
δpw=exp(ξpw)/

∑
w′ exp(ξpw′) [Dir prior]

$p ∼ Dirichlet(δp) [ptcpt lang mod]

Figure 6.2: The generative story of the modi�cation to the parameter generation
procedure for ϑe and $p to encode word correlations.

The component (γe ← ηe) indicates that ηe is normalized in an intermediate
step to yield γe using the logistic transformation:

γie = k ∗ exp(ηie)∑
i′ exp(η

i′
e)
. (6.2)

We introduce a parameter k, which allows us to scale the resulting Dirichlet
parameters, and thus to regulate sparsity of the posterior distributions.

Note that when resampling a parameter vector ηe for a particular event
type e, only the DCM component a�ecting event type e is relevant. Unlike in
the previously de�ned resampling steps, we need to consider the normalizing
constant here, because it depends on the hyperparameter vector γe we want to
learn:

DCM(e; (γe ← ηe)) =
Γ(
∑
v γ

v
e)∏

v Γ(γve)

∏|Vη|
v=1 Γ(Ne

v + γve)

Γ(
∑|Vη|
v=1N

e
v + γve)

. (6.3)

The posterior distribution over prior parameter vectors, as de�ned in Equa-
tion 6.1, consists of two terms. The �rst term assigns high probability to pa-
rameter vectors which are likely under the Multivariate Gaussian distribution
parameterized with the respective WordNet-based covariance matrix. The sec-
ond term returns the document likelihood of all observed data currently labeled
with the class for which the prior is being resampled. While the �rst term
triggers correlating hyperparameter values for semantically similar words, the
second term regulates the magnitude of the hyperparameters: a likely hyper-
parameter vector for class e should have a high prior value for a term t which
is often observed with label e in the data, and also for all terms similar to t
according to the covariance matrix.

The resulting posterior distribution over possible vectors ηe is a continu-
ous distribution over vector-valued variables. Direct sampling from it is in-
tractable, because the normalizing constant is unknown. We use multivariate
Slice sampling to sample from this distribution, by successively resampling each

48 CHAPTER 6. INFORMED PRIOR KNOWLEDGE

Term vi simSet(vi)

select decide
eat consume
enter want, look, enter, count
cup container, receptacle
food table, drink, menu, board, meal

counter table
garbage trash, container, tray, receptacle

Table 6.3: Examples for simSets obtained from the event covariance matrix
(top), and the participant covariance matrix (bottom) for the scenario Eating

in a fastfood restaurant. Whenever observed word i is assigned a new class
label we update the components corresponding to all words in the set in wi's
old class and wi's new class.

component of the vector based on the probability of the full vector under the
Multivariate Gaussian.

6.3.1 E�cient Prior Resampling

Taking posterior samples from the Logistic Normal distribution, thus resampling
the full prior parameter vector, is computationally expensive. We employ a few
heuristics to make updates more e�cient.

First, we heuristically de�ne a set simSet(vi) of closely related terms for each
term vi in a vocabulary. We build this set based on the similarity scores in the
covariance matrix by including all terms in the vocabulary whose similarity to
term vi exceeds an empirically determined threshold. We de�ne this threshold as
0.1∗Σξ(i, i) for each participant term vi, meaning that any term vj ∈ simSet(vi)
must share 10% of all senses of term vi. For event terms the threshold is de�ned
as 0.3 ∗ Ση(k, k), 30% of all senses of term vk must be shared. As indicated
above, similarity scores among event-realizing terms tend to be higher, and less
distinctive, than those among participant-realizing terms, such that we set a
higher threshold for the former. Examples for the simSets of closely related
terms we obtain with this method are displayed in Table 6.3.

Whenever the label of an observed word w was changed from the old label
x to the new label y in the previous Gibbs update, we resample speci�cally
the components corresponding to w in the parameter vectors for both classes,
ηwx and ηwy . To encourage the correlations as de�ned in the covariance matrix,
we furthermore resample components ηux and ηuy for each u ∈ simSet(w), the
synonym set of word w. Finally, we renormalize ηx and ηy in order to update
the corresponding Dirichlet parameter vectors γx and γy.

Intuitively, the component ηwclass should increase for the new class of w, since
the DCM component should return a high probability for parameter vectors in
which component w has an increased value. Increasing values for all words
u ∈ simSet(w) should be triggered through the in�uence of the covariance
matrix. Consequently the corresponding components in the prior vector γclass
should increase, while all other components decrease, due to re-normalization.
Following the same reasoning, relevant components in the prior vector for the

6.4. SUMMARY 49

class w was previously assigned should decrease.
After every nth iteration of the Gibbs sampler, we fully resample all pa-

rameter vectors in order to capture the globally de�ned correlations from the
covariance matrix.

6.4 Summary

One bottleneck for the performance of our model is the limited amount of train-
ing data we have available. In this chapter, we have described our approach
towards this problem, through an extension to the script model, which allows
for incorporation of prior knowledge. We construct word similarity scores from
WordNet in a completely unsupervised way, and use them for modeling correla-
tion of probability of semantically related words across all type-speci�c language
models. We described our way of incorporating the prior knowledge into our
Bayesian model, and explained the extension of the inference procedure.

The description of our Bayesian script model, and the corresponding infer-
ence process is now complete. In the following chapters we will evaluate our
model, and provide a quantitative and qualitative analysis of its performance.

50 CHAPTER 6. INFORMED PRIOR KNOWLEDGE

Chapter 7

Evaluation

After describing the script model and its inference process, we will now evaluate
its performance. We will evaluate our system on three tasks,

1. event cluster induction

2. induction of a scenario-speci�c canonical event ordering

3. participant cluster induction.

Our evaluation will closely follow the work presented in Regneri et al. (2010)
(henceforth R10) and Regneri et al. (2011) (henceforth R11), and we will com-
pare our model directly against the two systems developed in R10 and R11.
R10 present a graph-based system for learning event paraphrases and ordering
constraints. They collect scenario-speci�c corpora of ESDs, and create a gold
standard for evaluation of both tasks. R11 present a system for participant
clustering, which builds on R10, and they construct a gold standard for this
task. Both systems are described in detail in Section 2.1. In order to be able
to compare our system to the systems presented in R10 and R11, we evaluate
our model on the same tasks, and use the same data and the same metrics for
evaluation.

We start by giving an overview over the data we use for development and
testing in Section 7.1. We describe our experimental setup in Section 7.2, by
explaining the data preprocessing procedure, the evaluation metrics, and the
gold standard that we use, as well as the setup for the various experiments we
run.

7.1 Data

Our model learns event types and participant types from event-sequence de-
scriptions (ESDs), which are explicit instantiations of scripts. Our data consists
of a number of corpora, each of which contains a set of ESDs for a particular
scenario.

We use data from di�erent sources, which we describe below. A commonality
that our resources share is that they are collected through crowd sourcing (e.g.
Singh et al. (2002)). We deal with common sense knowledge about frequent
every day situations, that every member (of the Western culture) knows about,

51

52 CHAPTER 7. EVALUATION

Iron Clothes Take a bus
Get wrinkled clothes Walk to the bus stop
Put it on the ironing board Wait in line
Go over with hot iron Get on the bus
Do again with other clothes Pay for the ticket
Make sure they aren't wrinkled Seat if there is room to do so
Put iron away

Cook scrambled Eggs Pay with credit card
Turn on the oven Slide card through reader
Put pan on oven Wait for cashier to process
Put a bit of oil in the pan Sign the receipt
Throw some eggs into the pan Get my receipt
Stir eggs Put my card in my wallet
Put scrambled eggs on plate Leave
Eat eggs

Table 7.1: One example ESD for each of the four scenarios Iron clothes, Take
a bus, Cook scrambled eggs and Pay with credit card.

and that, for this reason, is seldom made explicit. One promising way of captur-
ing this implicit knowledge in a general way is to ask a representative number of
volunteers to explicitly describe a common scenario-speci�c event chain. From
the variety of obtained descriptions, it is possible to extract a generic idea about
the stereotypical scenario-speci�c event chain.

R10 collect corpora of ESDs for 22 di�erent scenarios of varying complexity,
which we will call the R10 corpus. The data was collected via a web exper-
iment through Amazon Mechanical Turk1. For each scenario, 25 non-expert
annotators were asked to describe the stereotypical sequence of events involved
in the scenario in temporal order and �bullet point-style� language. Table 7.1
shows one example ESD for each of the scenarios Eating in a restaurant,
Taking a bus, Cook scrambled eggs and Paying with a credit card. The
R10 corpus was manually postprocessed. Nonsense- or inappropriate ESDs were
removed, some spelling mistakes were manually corrected, and ESDs were struc-
turally changed (e.g. by splitting event descriptions including two conjuncted
events).

In addition to the corpus they collected, R10 use data from the Open Mind
Indoor Common Sense (OMICS) corpus (Gupta and Kochenderfer, 2004). The
corpus has a very similar format to the R10 corpus, but is restricted to indoor
activities. The corpus was originally collected to provide robots with common
sense knowledge. Like the R10 corpus, the OMICS corpus was collected through
crowd sourcing. The OMICS corpus contains on average around twice as many
ESDs per scenario as the R10 corpus.

Tables 7.2 and 7.3 provide an overview over the scenario types we use for de-
velopment and testing, respectively, including the size of the respective corpora
and the average length of an ESD in event descriptions.

1http://www.mturk.com/

7.1. DATA 53

Scenario Name Abbreviation]ESDs Avg len

OMICS corpus
Answer Doorbell Doorbell 49 3.59
Do Laundry Laundry 32 5.69

R10 corpus
Make Omelet Omelet 25 6.16
Eat in Restaurant Restaurant 19 10.4

Table 7.2: The list of scenarios from the R10 and the OMICS corpus used for
parameter tuning. The column named]ESDs speci�es the number of ESDs in
the corpus for the respective scenario. The average length of an ESD in event
descriptions is given in the rightmost column.

Scenario Abbreviation]ESDs Avg len

OMICS corpus
Cook food using microwave Microwave 59 5.03
Answer the telephone Telephone 55 4.47
Buy from vending machine Vending 32 4.53
Make co�ee Co�ee 38 5.00

R10 corpus
Iron clothes Iron 19 8.79
Make scrambled eggs Scr. Eggs 20 10.3
Eat in fast food restaurant Fastfood 15 8.93
Return food (in a restaurant) Ret. Food 15 5.93
Take a shower Shower 21 11.29
Take the bus Bus 19 8.53

Table 7.3: Scenario types from the R10 corpus and the OMICS corpus used
as test scenarios in our experiments. The column named]ESDs speci�es the
number of ESDs in the corpus for the respective scenario. The average length
of an ESD in event descriptions is given in the rightmost column.

54 CHAPTER 7. EVALUATION

7.2 Experimental Setup

We start by describing the preprocessing steps we apply to our data, the gold
standards we use for evaluation, and the evaluation metrics we employ. Finally,
we describe the design of our experiments.

Preprocessing

We preprocess our data in a number of ways. First, we �lter participant descrip-
tions out of every event description. Regneri et al. (2011) parsed all corpora
they used for evaluating their R10 and R11 system, using a dependency parser,
speci�cally trained for the �bullet point-style� phrases our data consists of. On
the basis of the resulting dependency parses, they identi�ed all noun phrases in
all event descriptions. We use this set of noun phrases, and take each identi-
�ed noun phrase as one participant description. We thus extract all participant
descriptions from the original event description, which leaves us, for each event
with the description of the event, usually a verb phrase lacking its arguments,
and a set of participant descriptions, each corresponding to one noun phrase.
We do not include any information on the ordering of participants or any infor-
mation about semantic roles in this set.

We remove all pronouns from the data, because we currently do not have any
component for dealing with pronoun resolution in our model. We furthermore
remove all articles. Finally, we reduce all participant descriptions, as de�ned
above, to their head words.

As an example, the event description �put the pasta into boiling water� would
be represented as the description of the event �put into� and the two participant
descriptions �pasta� and �water�, after the preprocessing step.

Gold Standard

We use the gold standard data sets presented in R10 and R11 in our evaluation.

R10 presents two gold standards, one for the task of event clustering, and
one for learning ordering constraints. Both gold standards consist of pairs of
event descriptions with a binary annotation. For the event clustering gold stan-
dard, 30 event description pairs that their system classi�ed as paraphrases, and
30 completely random pairs were collected. Annotators decided for each pair
whether the two phrases are paraphrases, describing the same event type. Sim-
ilarly, for the ordering gold standard 30 pairs of event descriptions (a, b) that
were classi�ed as a happens before b by their system were collected, plus 30
random pairs. Annotators were asked to decide, for each ordered pair of event
descriptions, whether the descriptions are described in their natural order. As
the �nal annotation the majority vote of the 5 annotators was taken.

R11 presents a gold standard for participant clusters. Annotators created
participant description sets (PDS) of noun phrases referring to the same type
of participant. Sets of aligned event descriptions were sequentially presented to
the annotators. The annotators extracted all noun phrases referring to some
participant, and grouped them into PDSs. Note that the set of extracted NPs
by the annotators does not always correspond to the set of NPs automatically
identi�ed by the dependency parser.

7.2. EXPERIMENTAL SETUP 55

Evaluation Metrics

We use two di�erent evaluation metrics, namely the precision/recall metric for
event paraphrase and event ordering evaluation, and the b3 metric for evaluation
of the inferred participant clusters.

Precision, Recall and F1-Measure

We use the following standard de�nitions for precision, recall and F1 measure:

precision =
truesys ∩ truegold

truesys
(7.1)

recall =
truesys ∩ truegold

truegold
(7.2)

F1 =
2 ∗ precision ∗ recall
precision+ recall

, (7.3)

where truesys stands for the number of pairs labeled as positive as classi�ed by
our system, and truegold stands for the number of pairs labeled as positive in the
gold standard. The intersection truesys ∩ truegold is thus the number of cases
that were correctly recognized as true by the system. Precision is a measure
for the extent to which the pairs labeled as true by the system are really true
as de�ned in the gold standard. Recall is a measure for the extent to which
the pairs labeled as true in the gold standard are captured in the true pairs as
labeled by the system. Since the two measures stand in a trade-o� relation, the
F1 measure is de�ned as their harmonic mean.

The b3 Metric

Inferring participant description sets can be viewed as a form of co-reference
resolution. The b3 metric is a commonly used evaluation metric in this �eld
(Bagga and Baldwin, 1998), and we follow R11 in using the b3 metric for partic-
ipant cluster evaluation. The b3 measure computes an individual precision and
recall score for all mentions of a participant description in the corpus. Precision
and recall for a particular mention i are de�ned as:

precision(i) =
|sysi ∩ goldi|
|sysi|

(7.4)

recall(i) =
|sysi ∩ goldi|
|goldi|

, (7.5)

where sysi refers to the PDS mention i is assigned to by the system, and goldi
refers to the gold PDS mention i is assigned to. |sysi| and |goldi| refer to the
length of the PDS to which i belongs in the gold annotation and the system
labeling, respectively, and |sysi ∩ goldi| refers to the overlap between the two
PDSs.

A �nal score for the system's performance is computed by averaging over
all mention-speci�c precision and recall scores. We compute a �nal F1 mea-
sure taking the average precision and recall scores, and using the de�nition in
Equation 7.3.

56 CHAPTER 7. EVALUATION

Since the participant mentions provided to the model are automatically ex-
tracted by a dependency parser, they do not always correspond to the man-
ually extracted mentions included in the gold standard. This is problematic
because b3 precision is only de�ned on mentions occurring in the system sets
(|sysi| > 0), and b3 recall is only de�ned for mentions occurring in the gold
standard (|goldi| > 0). Cai and Strube (2010) extended the b3 metric to deal
with this problem in an accurate way. All mentions included in the gold stan-
dard, but not in the system mentions are copied as singleton PDSs to the latter.
Conversely, all mentions included in some non-singleton PDS inferred by the
system, but not in the gold standard, are included as singleton sets in the gold
standard. Mentions which only occur in the system sets as a singleton PDS are
discarded.

Parameters

In all experiments, we run the Gibbs sampler for 6000 iterations, and report
results based on the posterior distributions after the 6000th iteration. One
iteration is de�ned as one sweep over all ESDs in the corpus, where we decide
randomly for each ESD which random variable ∈ {τ ,v,κ} to resample. We
resample η and ξ component-wise as described in Section 6.3.1, and resample
the full vectors for every class in the model after every 100th iteration.

We use a development set of four scenarios, the details of the corpora are
displayed in Table 7.2. We tune our hyperparameters on these scenarios, and
obtain the following values. The Beta parameters for event realization are set
to α+ = 0.7, α− = 0.1, and the Beta parameters for participant realization
β+ = 0.5, β− = 0.001. We set the prior parameters of the GMM ρ0 = 1.0
and ν0 = 3.0. We �nally tune the scaling parameter for the Dirichlet priors of
event language models kη = 0.7 and participant language models kξ = 1.0. We
initialize the regularization parameter ε = 0.0, and increase it from the 500th

sampling iteration on after every 100th iteration by 0.1.
Finally, we specify the number of event types E and the number of par-

ticipant types P manually to a number higher than the expected number of
event types and participant types present in the data. The model will converge
towards using a subset of all possible types. We set E = 25 and P = 30.

Experiments

In our experiments, we use 10 scenario types which we did not use for develop-
ment, as displayed in Table 7.3.

We will conduct two sets of experiments. First, we will compare the perfor-
mance of our model to the performance of the R10 system and the R11 system in
order to get a notion of how well our model performs in comparison to existing
systems for unsupervised script modeling. We compare the performance on the
tasks of event clustering, and ordering constraint learning to the R10 system.
The performance on participant clustering of our system will be compared to
the performance of the R11 system. Note that the R10 system and the R11
system together tackle the three problems in a pipeline-based architecture. Our
model induces all three tasks jointly, in one learning step.

In a second set of experiments, we will examine the in�uence of the compo-
nents in our system. We compare the performance of the full model, to a model

7.2. EXPERIMENTAL SETUP 57

variant in which we omit the Generalized Mallows Model, in order to assess the
contribution of ordering constraints on all three tasks. Additionally, we evalu-
ate a model which lacks the informed prior knowledge of word similarities (but
includes the GMM). Comparing the full model to this variant will shed light on
the usefulness of the prior knowledge as we de�ne it.

We �nally provide a qualitative analysis of the clusters induced by our script
model.

58 CHAPTER 7. EVALUATION

Chapter 8

Results and Discussion

We present the results for the various experiments described in the previous
chapter. We start by comparing our model to the R10 and R11 systems in
Section 8.1, and continue by comparing di�erent variants of our model against
each other in Section 8.2. Finally, in Section 8.3 we will provide a qualitative
analysis by looking into the clusters induced by our model.

8.1 Comparison to Existing Systems

In the following evaluations, we will present results on a subset of the scenario
types presented in the R10 and the R11 evaluation. In addition to this subset,
we were able to obtain results of the R10 system on scenarios which are not
mentioned in the publication. Those scenarios are marked with an asterisk (*)
in the relevant Tables 8.1 and 8.2.

The Event Paraphrase Task

Table 8.1 displays the evaluation results of our model (Bayesian Scripts; BS) and
the R10 model on the event paraphrase task. Overall, the performance of both
systems is very similar. While our system achieves better precision on average
across all evaluation scenarios, the R10 system achieves higher recall scores, and
a slightly higher average F1 score. For most scenarios the performance of both
systems correlate, meaning that the systems tend to perform well/poorly on the
same set of scenarios. There are the two notable exceptions of the Bus scenario
where our system performs comparably very poorly, and the Fastfood scenario
where our system clearly outperforms the R10 system. We note that the Bus

scenario corpus contains an unusual variety of event types. It might be that the
ordering constraints imposed by the GMM are too strict to capture this variety.
Conversely, the ESDs in the Fastfood corpus are much more regular, so that
the event clustering component can take advantage of the ordering constraints
posed by the GMM in this case.

The Event Ordering Task

The results of the system evaluation on the event ordering task are displayed
in Table 8.2. We can observe a similar pattern as before. Our model achieves a

59

60 CHAPTER 8. RESULTS AND DISCUSSION

Scenario Event Paraphrase Task

Precision Recall F1
R10 BS R10 BS R10 BS

Co�ee 0.50 0.47 0.94 0.58 0.65 0.52
Telephone 0.93 0.92 0.85 0.72 0.89 0.81

Bus 0.65 0.52 0.87 0.43 0.74 0.47
Iron 0.52 0.65 0.94 0.56 0.67 0.60

Scr. Eggs 0.58 0.92 0.86 0.65 0.69 0.76
Vending 0.59 0.72 0.83 0.78 0.69 0.75

Microwave* 0.75 0.85 0.75 0.80 0.75 0.82
Shower* 0.70 0.68 0.88 0.67 0.78 0.67
Fastfood* 0.50 0.74 0.73 0.87 0.59 0.80
Ret. Food* 0.73 0.90 0.68 0.87 0.71 0.89

Average 0.645 0.737 0.833 0.693 0.716 0.709

Table 8.1: Results of the evaluation on the event ordering tasks. Our system
(BS) is compared to the system presented in Regneri et al. (2010) (R10). We
report precision, recall and F1 measure for 10 scenario types.

Scenario Event Ordering Task

Precision Recall F1
R10 BS R10 BS R10 BS

Co�ee 0.70 0.68 0.78 0.57 0.74 0.62
Telephone 0.83 0.92 0.86 0.87 0.84 0.89

Bus 0.80 0.76 0.80 0.76 0.80 0.76
Iron 0.78 0.87 0.72 0.69 0.75 0.77

Scr. Eggs 0.67 0.77 0.64 0.59 0.66 0.67
Vending 0.84 0.86 0.85 0.75 0.84 0.80

Microwave* 0.47 0.91 0.83 0.74 0.60 0.82
Shower* 0.48 0.85 0.82 0.84 0.61 0.85
Fastfood* 0.53 0.97 0.81 0.65 0.64 0.78
Ret. Food* 0.48 0.84 0.75 0.75 0.58 0.79

Average 0.658 0.843 0.786 0.721 0.706 0.775

Table 8.2: Results of the evaluation on the event type ordering task, of our
system (BS) and the R10 system. Precision, Recall and F1-scores are reported
for 10 scenario types.

8.1. COMPARISON TO EXISTING SYSTEMS 61

Scenario Precision Recall F1
R11 BS R11 BS R11 BS

Co�ee 0.85 0.72 0.80 0.54 0.82 0.62
Fastfood 0.82 0.60 0.82 0.57 0.82 0.59
Microwave 0.89 0.73 0.84 0.49 0.86 0.59
Ret. Food 0.80 0.48 0.52 0.29 0.57 0.36
Shower 0.87 0.72 0.83 0.61 0.85 0.66
Vending 0.80 0.60 0.78 0.34 0.79 0.43

Table 8.3: Results on the participant clustering task, comparing the system pre-
sented in Regneri et al. (2011) (R11), to our model (BS). Results are computed
under the Precision/Recall metric in the context of the b3 metric.

signi�cantly higher Precision score averaged across all scenarios, while the R10
system, again, achieves higher Recall scores. Our model outperforms the R10
model in the overall F1 score by a margin of 7 percent points.

The general pattern of higher Precision but lower Recall scores for our system
suggests that the event clusters we infer are accurate, and the underlying event
ordering is captured well, but that they are not general enough and the order is
too restricted. One explanation might, again, be the very strong preference for
canonical ordering that the GMM component imposes in our model. We want
to experiment with varying �exibility of this component in future work.

The R10 system aligns event descriptions based on semantic similarity in a
�rst step, and creates a temporal script graph (TSG), a graph representation
of the script, on the basis of this alignment. Our model jointly induces both
aspects, which is a more ambitious learning objective. Under this consideration,
the results our model achieves compare favorably to the results of the R10 system
overall on the event paraphrase task and the event ordering task.

The Participant Paraphrase Task

We also evaluate the quality of the participant clusters induced by our model.
We compare the performance of our model to the performance of the R11 system.
Table 8.3 displays all results.

Our model is clearly outperformed by the existing R11 model. A look into
the induced clusters showed that our model induces singleton participant clus-
ters. Each participant cluster contains all mentions of a particular type of
participant description. The latter phenomenon is triggered by our posterior
regularization component, which encourages all mentions of a term in the par-
ticipant vocabulary to be assigned to the same cluster (cf. Section 5.4). While
this is a useful initial assumption, as shown in R11, our model fails to learn
that di�erent participant descriptions can refer to the same type of participant.
It is possible that our regularization factor is too strong and thus prohibits
clustering of terms once all mentions have been assigned to one cluster. How-
ever, we experimented with di�erent parameterizations and did not observe any
improvement in performance.

The R11 system is based on the R10 system, taking the output of the R10
system, and computing participant equivalence sets on the basis of this output.
The event clusters are thus �xed already, and participants are inferred on the

62 CHAPTER 8. RESULTS AND DISCUSSION

Scenario Intra Cluster Inter Cluster
Ret. Food 0.60 0.40
Laundry 0.61 0.25
Vending 0.48 0.30

Table 8.4: Analysis of correlation of participant mentions across event type
assigned to the same gold event cluster (Intra Cluster) and of correlation of
participant mentions across gold event clusters (Inter Cluster). The reported
scores are cosine-similarities.

basis of fairly con�dent event clusters. In contrast, our model aims to learn
participant clusters jointly with the two other tasks. We assume that partic-
ipant mentions provide strong cues for event type clustering, and vice versa.
However, the model fails to induce reasonable clusters of equivalent participant
descriptions, referring to the same participant type.

We conducted a few tentative experiments in which we �xed the participant
types as speci�ed in the gold standard, expecting that this information would
facilitate induction of event types and event orderings. However, we did not
observe improved performance on these tasks, which suggests that participant
mentions do not provide reliable clues for event clustering in our model.

One reason for this behavior might be the fact that event types and par-
ticipant types do not necessarily correlate strongly in the data. One example
would be the most frequent participant type �food� in the scenario Eating in

a Restaurant. Participant type �food� occurs with a great variety of distinct
event types such as �decide for�,�order�, �eat�, �like�, �pay for�, which also occur
in di�erent positions in the event chain. Introducing participants as a factor
into the joint model, might thus add noise to the inference procedure, rather
than useful information.

We conducted an experiment on the correlations of types of participant de-
scriptions within each gold event cluster, compared them to correlations across
gold event clusters. A feature vector was constructed for each event mention
included in the gold standard, with all participant description types of the whole
corpus as dimensions, containing a count for each participant description with
this event mention. We computed the average cosine similarity between those
vectors for all event mentions within one gold event cluster in order to obtain
intra-cluster similarities. For inter-cluster similarities we obtained one feature
vector for each gold cluster by averaging the vectors of all cluster members, and
we computed the average cosine similarity between all average vectors. Our
results are displayed in Table 8.4. While intra-cluster correlation is consistently
higher than inter-cluster correlation, the di�erence is not as clear as it might be
expected.

8.2 In�uence of Model Components

In the previous section we compared our model to the existing systems R10
and R11. In this section we present an intrinsic evaluation of our model, in
order to examine the in�uence of di�erent components. We will compare the
performance of the full script model to two model variants:

8.2. INFLUENCE OF MODEL COMPONENTS 63

• -GMM We omit the Generalized Mallows Model. This will allow us to
evaluate the bene�t of ordering constraints on the tasks of event clustering
and participant clustering.

• -COVAR In this model variant, we do not provide the informed prior knowl-
edge, based on semantic word similarity. Comparing this model to the full
script model allows us to judge to what extent we minimize the problem of
small training data sets with our approach of injecting external knowledge
for guiding the inference process.

We compare the performance of the model variants on four scenario types, and
the results are displayed in Table 8.5.

In�uence of the Generalized Mallows Model

Focusing on the event paraphrase task �rst, the results clearly show that the
GMM has a strong positive in�uence on the model performance across all four
test scenario types. The -GMMmodel variant has no preference towards capturing
temporal structure in the induced clustering, such that a comparison on the
event ordering task is not really possible. The IDs assigned to the particular
clusters are random in this case, and do not capture any ordering information.

Moving on to the participant paraphrase task, the bene�t of the GMM does
not emerge clearly. On the one hand, many participant types tend to occur
at many di�erent points of time in the script, such that we would not expect
participants to bene�t from ordering constrains directly. On the other hand,
the quality of induced event clusters clearly improves under the GMM, such
that, given our original modeling assumptions, we would expect the quality
of participant clusters to improve with it. The fact that this is not the case,
and the surprisingly low participant type-event type correlations presented in
the previous section, suggest that our modeling assumptions might not fully
accurately resemble the data.

In�uence of the Informed Prior Knowledge

We move on to comparing the full model to a variant which does not have
access to the informed prior knowledge. Instead we specify uniform Dirichlet
parameters, γ = 0.1 and δ = 0.1. We can see from Table 8.5 that, for the
event-related objectives, the informed prior knowledge boosts performance for
the scenarios Return Food and Shower, while it harms performance for the
Microwave scenario, and has a mixed in�uence on the Vending scenario.

Looking at the overview over our test corpora, displayed in Table 7.3, we can
see that one explanation for this result can be the size of the training corpora for
the respective scenarios. The Microwave corpus consists of approximately three
times as many ESDs as the training corpora available for the Shower scenario
and the Return food scenario. It might be the case that the prior knowledge
does provide useful guidance when the available training corpus is very limited
in size. However, we obtain the word covariances in a completely unsupervised
way, and did not experiment with optimizing this process. For scenarios for
which we have a larger training corpus available, it might thus be the case that
the prior knowledge is too noisy, and disturbs the inference process rather than
providing useful guidance.

64 CHAPTER 8. RESULTS AND DISCUSSION

Model Event Paraphrase Event Ordering Ptcpt. Paraphrase

P R F P R F P R F

Ret. Food
Full 0.90 0.87 0.89 0.84 0.75 0.79 0.48 0.29 0.36
-GMM 0.50 0.25 0.33 0.41 0.38 0.39 0.49 0.29 0.36

-COVAR 0.86 0.72 0.65 0.76 0.69 0.72 0.50 0.29 0.37

Vending
Full 0.72 0.78 0.75 0.86 0.75 0.80 0.60 0.34 0.43
-GMM 0.84 0.35 0.49 0.65 0.45 0.53 0.60 0.30 0.40

-COVAR 0.85 0.71 0.77 0.81 0.66 0.73 0.55 0.36 0.43

Shower
Full 0.68 0.67 0.67 0.85 0.84 0.85 0.72 0.61 0.66
-GMM 0.36 0.17 0.23 0.40 0.37 0.38 0.71 0.68 0.69

-COVAR 0.64 0.44 0.52 0.75 0.71 0.73 0.65 0.68 0.67

Microwave
Full 0.85 0.80 0.82 0.91 0.74 0.82 0.73 0.49 0.59
-GMM 0.88 0.31 0.45 0.67 0.62 0.64 0.73 0.53 0.61

-COVAR 0.81 0.99 0.90 0.92 0.83 0.88 0.72 0.68 0.70

Table 8.5: Results of three model variants on our three evaluation tasks. The
�rst line per scenario shows the performance of the full model. -GMM is a model
version without the GMM component. In the -COVAR version the prior co-
variance information is replaced with a uniform Dirichlet prior (but it includes
the GMM). We show standard Precision, Recall and F1-Measure for the event
paraphrase task, and the event ordering task, and b3 scores for the participant
paraphrase task. We evaluate on four scenario types.

8.3. QUALITATIVE ANALYSIS 65

Cluster Words
1 go to locate walk load move co�ee
2 �nd get open grind
3 in pour from into get boil identity plug
4 �nd put in turn on place clean identify close
5 put in into place inside do install add measure
6 to get grind if have make sure press start add measure co�ee

require �lter
7 put �ll in on with plug down run through
8 �ll turn on wait with until be o� do watch up
9 to in pour from into place under brew when do add spout out

as desire
10 turn on o� stir switch as desire audd
11 to turn on wait for stop drip be and brew when full remove

serve set auto then

Table 8.6: Event type clusters induced for the Coffee scenario.

There are several factors in the prior knowledge construction process that can
be optimized. First, there are many ways to construct the word-speci�c feature
vectors. Our simplistic approach of binary features depending on whether a
word sense is member of a SynSet, can be re�ned. Additionally, it is possible to
optimize the in�uence covariance matrix itself, by tuning the relative in�uence
of the Logistic Normal component, and the document likelihood component in
the posterior probability over Dirichlet parameter vectors.

The performance of the participant component varies very little across model
variants, such that it is not possible to draw con�dent conclusions about the in-
�uence of our modi�cations on participant learning. This observation supports
our previous assumption that the resulting participant clusters are mainly trig-
gered by strong hyperpriors and posterior regularizations, and suggests that this
process receives only little in�uence from the other components in our model.

8.3 Qualitative Analysis

In order to illustrate the previously presented results, we show examples of
the posterior event clusters our model induced, by looking into the induced
language models, i.e. the terms of the event vocabulary assigned to each event
type. We do not show induced participant clusters here, because our model
currently infers exclusively singleton participant clusters. We thus obtain one
individual cluster for each participant description type, containing all mentions
of this type in the data. Tables 8.6-8.8 present the posterior event clusters for
various scenario types.

For all scenarios the model converges on a subset of the maximum number
of 25 event types we speci�ed a priori. Generally, the members of a cluster
are not necessarily synonyms, but, especially given the restricted domain of a
particular scenario, the words are clearly semantically related in most cases.
One commonality between the members of a particular cluster is their position
in the ESDs: cluster IDs correlate with the position at which the event type

66 CHAPTER 8. RESULTS AND DISCUSSION

Cluster Words
1 walk to order at go counter up inside �nd look
2 walk into enter
3 to listen repeat
4 tell
5 to order eat decide what want park car on count proceed
6 wait in to order get place stand line examine give
7 order pay for at listen con�rm
8 into order at collect make from look food dispense
9 in swipe
10 wait pay for at pick up put expect receive with
11 to keep go take �nd move
12 wait to for get pick up when ready be call recieve select do
13 seat at eat sit down look consume exit
14 to stand o� dispose of
15 in eat place take put away throw
16 get eat leave clear return

Table 8.7: Event type clusters induced for the Fastfood scenario.

described by the words in the cluster tends to occur in an ESD. This con�rms our
previously presented experiments on the bene�t of the GMM. Taking a closer
look at the clusters learnt for the Fastfood scenario, displayed in Table 8.7,
we can extrapolate the following abstract ordered event chain from the output,
which resembles an accurate description of the scenario:

1. enter restaurant (cluster 1-2)

2. order/pay (cluster 3-9)

3. receive food (cluster 10-12)

4. eat food (cluster 13)

5. dispose of trash (cluster 14-15)

6. leave restaurant (cluster 16)

In the clusters inferred for the Fastfood scenario, displayed in Table 8.7,
the event description �wait� occurs in multiple clusters, namely cluster 6, whose
topic broadly corresponds to �waiting to order the food�, as well as in clusters
10 and 12, which broadly describe the event type of �waiting for the food�. Our
model thus captures the fact that one term of the event vocabulary may describe
di�erent types of events, depending on their position in the ESD.

Table 8.8 shows, for comparison, the clusters induced for the Microwave

scenario by the -GMM version of the model in the bottom part, and the clusters
inferred by the best performing model variant -COVAR. In contrast to the clusters
inferred by the -COVARmodel, which includes the GMM component, it is di�cult
to �nd any coherence within the clusters inferred by the -GMM model variant.
Note that the event type distributions inferred by the -GMMmodel variant are less

8.4. SUMMARY 67

sparse, meaning that more distinct clusters are learnt by model. Furthermore,
the cluster-speci�c language models are less sparse, which results in the fact that
the probability mass is distributed across more distinct terms of the vocabulary
and thus that all clusters tend to contain more realizing words. Conversely, each
term in the vocabulary is assigned to more distinct event types, which results
in topically less clear-cut clusters.

For illustration, we highlight in boldface all occurences of the event-realizing
term �remove� in the -COVAR clusters and in the -GMM clusters. The former model
infers two event types including the verb �remove�: it is included in cluster 1, in
the sense of �removing the package from the food�, as well as in cluster 8 where
it refers to �remove the food from the microwave�. In contrast, through the
more uniform language model parameters inferred by the -GMM model variant,
the word appears in the majority of the inferred clusters, and no contextually
meaningful sense can be extrapolated.

The clusters also reveal some problems of the automatic preprocessing steps
we apply. First, the event type clusters contain some nouns, which should
have been automatically extracted from the dependency parses of each event
description (e.g. cluster 1 in Table 8.6 contains the noun �co�ee�). Some closer
inspection revealed that the dependency parser tends to make errors on words
which are ambiguous in their part of speech, since the �bullet point-style� phrases
often provide little cues for disambiguation. Many ESDs in the Microwave

scenario contain the event description �Press start.�, where �start� is used as a
participant, as an abbreviation for �start button�. The parser, however, analyses
�press� as a noun, and �start� as the verb of the phrase. We did not do any
manual correction of erroneous parser output. Another level of noise in the
data stems from misspelling. Since the data was collected in written form from
volunteers over the Internet, it is noisy with respect to grammar as well as
spelling. Although the R10 corpus was manually post-processed to some extent,
the data still contained many orthographic and grammatical errors. We did not
do any further manual cleaning.

8.4 Summary

In this section, we presented and discussed the performance of the Bayesian
script model in various experiments. We started by showing that the perfor-
mance of our joint model of event types and event orderings performs favorably
in comparison to existing models which learn the same targets in a pipeline
based architecture. We also showed that the model is not able to jointly induce
equivalence classes of participants.

We continued by examining the in�uence of di�erent components in our
model, by testing di�erent model variants and comparing their performance.
We were able to show the bene�t of the Generalized Mallows Model, in our joint
learning setting of event types and constraints on their orderings. An evaluation
on the bene�t of the informed prior knowledge was conducted, and we showed
that the prior knowledge is helpful for scenario types for which comparatively
little training data is available, but is not robust enough to boost performance
on scenario types for which we are equipped with more data.

We concluded by a qualitative analysis, and showing example event clus-
ters induced by the model, which supported the �ndings of the quantitative

68 CHAPTER 8. RESULTS AND DISCUSSION

Cluster Words
1 get put in to remove place take out of keep on heat locate from �nd

be with switch microwave-safe on/in
2 to close open take press locate �nd walk o� unwrap cover input
3 put in to place keep into on enter inside with replace loosely cover

wrap
4 set for close select shut check choose need
5 in set accord to for press on enter select up input stir cook choose as

punch indicate
6 start wait for push press and turn on select enjoy cook
7 set to wait for when do open until s �nish heat up be serve let repeat

till acheived cook over stop timer/power as appropriate
8 get remove when open take out of and after from go o� up be carefully

buzz eat beep ding

Cluster Words
1 in set to for remove push take out of press on from �nd enter input
2 set accord to remove open after locate from walk let
3 in to start wait for on until �nish select be cover repeat till acheived

cook over stop punch
4 start wait remove take out press and carefully eat
5 get put close press turn on �nd shut cook
6 put in set place into inside
7 set remove push take on locate from select o� unwrap serve cover stir

cook
8 in wait when open take out of and turn on until s �nish heat enter

select up be check choose need as indicate
9 close open
10 put in remove place open keep and into on with replace loosely on/in
11 set to start wait for close �nish heat up cook
12 put in start remove place when do open keep press into on select

inside buzz choose wrap ding
13 get put in set to for remove place close when take out on heat go o�

up be with beep microwave-safe timer/power as appropriate
14 start for turn on enter select enjoy switch

Table 8.8: Event type clusters induced for the Microwave scenario. Top: Clus-
ters induced by the best performing model variant -COVAR. Bottom: Clusters
induced by the -GMM model variant.

8.4. SUMMARY 69

evaluations.
As a last remark, we would like to point out that it is generally di�cult to

induce reliable models on small data sets in completely unsupervised learning
setting, as the one presented here. Even our prior knowledge module cannot
completely balance out this fact, because it only provides speci�c knowledge for
one module, the language model component, in our model. It is to be expected
that the performance of the model would increase with more available training
data. It might also be the case that learning three objectives from the small
corpora is over-ambitious. Predictive patterns of participant type occurrences
might emerge more clearly when more data is available, and it might be possible
to reliably infer participant types together with the event types and orderings
with our model in that case.

70 CHAPTER 8. RESULTS AND DISCUSSION

Chapter 9

Conclusion

Through years of experience, humans internalize knowledge about stereotypical
courses of events involved in every day situations. For NLP applications, such
as question answering or automatic summarization, it has been shown that this
kind of script knowledge improves performance (Cullingford, 1978; Miikkulainen,
1995).

In this thesis, we proposed a new way of learning script knowledge from
explicit event-sequence descriptions in a fully unsupervised way. We presented
a model that jointly learns event types, constraints on their ordering, and par-
ticipant types for various common scenarios. In particular, we presented a
hierarchical Bayesian script model, which allows us to formulate our modeling
decisions for the three objectives on one consistent theoretical foundation. We
derived an inference algorithm for our model, using Gibbs sampling for approx-
imate sampling.

We argued that our three learning objectives are highly connected and should
thus provide cues for each other in inference. We thus proposed a joint model. In
addition to this joint formulation we presented two further contributions: First,
we incorporated the Generalized Mallows Model (GMM), a �exible, statistical
model over permutations, for modeling event ordering constraints. In contrast to
previously employed approaches, the GMM is able to infer event type-speci�c
temporal �exibility. Secondly, we incorporated informed prior knowledge in
order to alleviate the problem of learning from small data sets. In particular we
encoded WordNet-based semantic similarities in a covariance matrix and thus
triggered correlations of probabilities of semantically related words across all
induced types.

We test the e�ect of our contributions in an extensive quantitative and quali-
tative evaluation. First, we evaluate our system, by comparing it to two existing
systems R10 (Regneri et al., 2010), which learns event types and orderings, and
R11 (Regneri et al., 2011), which infers participant types. The two systems
infer the three objectives in a pipeline-based architecture, employing di�erent
methodologies at each stage. The R10 model uses a less �exible ordering model,
i.e. multiple sequence alignment.

On the task of event type learning, the performance of our system is very
similar to the performance of R10. However, we tackle the more complex task
of inferring this objective jointly with the two other objectives. Given this
consideration our model compares favorably.

71

72 CHAPTER 9. CONCLUSION

Our model outperforms the R10 system on the task of learning ordering
constraints. This shows the e�ectiveness of our more �exible ordering model. We
conducted an experiment in which we compare our full model to a model variant
lacking the GMM component. The results signi�cantly degraded for the task of
event type learning, which empirically con�rms our theoretical motivation for
using the GMM for modeling event ordering constraints in our model.

We compare our model on the task of participant type learning to the R11
system. We were not able to obtain results comparable to the good performance
of the existing system. Although we assumed that participant types should pro-
vide clues for event type induction, and vice versa, the participant component in
our model does currently not have a positive in�uence. We provided a discussion
of this phenomenon, suspecting - based on an analysis of the data - that event
types and participant types do not necessarily correlate, and that our modeling
assumptions might thus be not entirely accurate.

We furthermore evaluated the in�uence of the prior knowledge component
by comparing to a model variant lacking this component. We were able to
show that our prior knowledge component boosts performance of the model
on scenario types for which particularly little training sets are available. For
scenario types for which larger amounts of training data are available, the model
results did not improve with the prior knowledge. This suggests that the prior
knowledge we de�ne might not be robust enough, yet.

We �nally provided a qualitative analysis of the event clusters inferred by
our model. Overall, the inferred clusters correspond to separate event types
involved in a particular scenario. Furthermore, the underlying temporal order
is captured in the inferred clustering.

9.1 Future Work

We conclude with pointing at possible directions for future work. Our evaluation
revealed that our model is currently not able to induce participant types jointly
with event types and event ordering constraints. One possible area for further
investigation would be considering the semantic roles of the participants. We
would expect that the discriminative power of participant types for event types
increases with this change. However, we have to keep in mind the problem of
the small data sets we are faced with, and the information in the data may
become too sparse if we impose further distinctions.

In addition to modeling event type-speci�c temporal �exibility with the
GMM, our model learns a measure for whether an event type is obligatory
or rather optional in a script, through the event type-speci�c realization proba-
bilities. The evaluations we presented in Chapter 8 do not capture these e�ects.
We want to design an evaluation speci�cally targeted at these phenomena. For
evaluating the latter phenomenon we could collect human judgments on the
level of optionality for speci�c event types and compare these to the parameters
induced by the model.

Our modeling assumptions currently consist of a number of simpli�cations,
which could be relaxed in a number of ways. Our generative story includes
simpli�cations, such as independence between event types in an ESD and in-
dependence among participant types within and across events. Clearly, these
assumptions are not present in the real data and we expect that loosening those

9.1. FUTURE WORK 73

independence assumptions will lead to a more accurate model. However, cur-
rently this is prohibitive due to the limited amount of available training data.

It would be interesting to examine to what extent we can alleviate the prob-
lem of small data sets by optimizing our prior knowledge component. We cur-
rently construct the similarity scores for our covariance matrix by counting
SynSet membership overlap for every pair of words. The similarity metric can
be easily tuned and re�ned, for example by considering the distance of any
sense of the word to a particular SynSet. Note, however, that we are somewhat
restricted in the ways we can compute word similarities, because the resulting
matrix must be positive semide�nite. Any similarity score of a word pair we can
use, should thus be computable as the dot product of two word feature vectors,
in order to guarantee that we meet this constraint. This, for example, excludes
standard WordNet similarity measures such as Lin's WordNet distance (Lin,
1998). Regneri et al. (2011) �nd that Lin's distance was the optimal choice for
incorporating semantic similarity into their R11 system.

Another possibility for optimization of the prior knowledge component is
tuning the in�uence of the matrix on the posterior probability distribution over
parameter vectors. It is possible to skew the covariance matrix in the directions,
in which the covariance between components is high already based in the Word-
Net similarity, and thus boost high similarities scores for two words even more.
As a side e�ect, the relative in�uence between the Multivariate Normal compo-
nent and the document likelihood component of the posterior can be in�uenced
in this way.

Our evaluation suggested that the canonical ordering inferred by the GMM
was too restricted for some scenarios. This suggests that one global parameteri-
zation of the GMM is too restrictive. One possibility of loosening this restriction
would be to relax the GMM in the early learning phase through appropriately
set hyperparameters, and change the hyperparameters during the learning pe-
riod such that the preference for canonical ordering increases, and, hopefully,
improves the quality of the event clusters at the same time. Another possibil-
ity for increasing �exibility of the GMM, as suggested by Chen et al. (2009),
would be to draw the parameters of the GMM from an additional layer in the
model hierarchy, instead of specifying it hyperparameters manually and globally
a priori.

74 CHAPTER 9. CONCLUSION

Bibliography

J. Aitchison. 1982. The statistical analysis of compositional data. Journal of
the Royal Statistical Society, Series B, 44:139�177.

Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan.
2003. An introduction to mcmc for machine learning. Machine Learning,
50(1-2):5�43.

Amit Bagga and Breck Baldwin. 1998. Algorithms for scoring coreference chains.
In In The First International Conference on Language Resources and Evalu-
ation Workshop on Linguistics Coreference, pages 563�566.

C. F. Baker, C. J. Fillmore, and J. B. Lowe. 1998. The berkeley framenet project.
In Proceedings of the 17th international conference on Computational linguis-
tics - Volume 1, COLING '98, pages 86�90. Association for Computational
Linguistics.

A. Barr and E.A. Feigenbaum. 1986. The handbook of arti�cial intelligence. 1
(1981). The Handbook of Arti�cial Intelligence. Addison-Wesley.

R. Barzilay, N. Elhadad, and K. McKeown. 2002. Inferring strategies for sen-
tence ordering in multidocument news summarization. Journal of Arti�cial
Intelligence Research.

Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

D. Blei and J. La�erty. 2006. Correlated topic models. In Advances in Neural
Information Processing Systems 18, pages 147�154. MIT Press, Cambridge,
MA.

D. M. Blei, T. L. Gri�ths, M. I. Jordan, and J. B. Tenenbaum. 2004. Hierar-
chical topic models and the nested chinese restaurant process. In Advances
in Neural Information Processing Systems 16. MIT Press.

D. M. Blei and J. D. La�erty. 2005. Correlated topic models. In Advances in
Neural Information Processing Systems 17.

D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993�1022.

75

76 BIBLIOGRAPHY

Jie Cai and Michael Strube. 2010. Evaluation metrics for end-to-end coreference
resolution systems. In Proceedings of the 11th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, SIGDIAL '10, pages 28�36. Asso-
ciation for Computational Linguistics, Stroudsburg, PA, USA.

N. Chambers and D. Jurafsky. 2008. Unsupervised learning of narrative event
chains. In Proceedings of ACL-08: HLT, pages 789�797. Association for Com-
putational Linguistics.

N. Chambers and D. Jurafsky. 2009. Unsupervised learning of narrative schemas
and their participants. In Proceedings of ACL-09 and the 4th International
Joint Conference on Natural Language Processing of the AFNLP, pages 602�
610. Association for Computational Linguistics.

N. Chambers and D. Jurafsky. 2011. Template-based information extraction
without the templates. In Proceedings of ACL.

H. Chen, S. R. K. Branavan, R. Barzilay, and D. R. Karger. 2009. Content
modeling using latent permutations. J. Artif. Int. Res., 36(1):129�163.

R. E. Cullingford. 1978. Script Application: Computer Understanding of News-
paper Stories. Ph.D. thesis, Department of Computer Science, Yale University.

Christiane Fellbaum, editor. 1998. WordNet: an electronic lexical database. MIT
Press.

M. Fligner and J. Verducci. 1986. Distance based ranking models. Journal of
the Royal Statistical Society, Series B, 48:359�369.

M. Fligner and J. Verducci. 1990. Posterior probabilities for a consensus order-
ing. Psychometrika, 55:53�63.

Stuart Geman and Donald Geman. 1984. Stochastic relaxation, gibbs distri-
butions, and the bayesian restoration of images. IEEE Trans. Pattern Anal.
Mach. Intell., 6(6):721�741.

João Graça, Kuzman Ganchev, Ben Taskar, and Fernando C. N. Pereira. 2009.
Posterior vs parameter sparsity in latent variable models. In Advances in
Neural Information Processing Systems 21, pages 664�672.

João V. Graça, Kuzman Ganchev, and Ben Taskar. 2008. Expectation maxi-
mization and posterior constraints. In Advances in Neural Information Pro-
cessing Systems 20, pages 569�576. MIT Press.

T. L. Gri�ths and M. Steyvers. 2004. Finding scienti�c topics. Proceedings of
the National Academy of Sciences, 101(Suppl. 1):5228�5235.

Rakesh Gupta and Mykel J. Kochenderfer. 2004. Common sense data acquisition
for indoor mobile robots. In AAAI, pages 605�610.

P. Hennig, D. H. Stern, R. Herbrich, and T. Graepel. 2012. Kernel topic models.
Journal of Machine Learning Research - Proceedings Track, 22:511�519.

Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volinsky.
1999. Bayesian model averaging: A tutorial. Statistical Science, 14(4):382�
417.

BIBLIOGRAPHY 77

M. G. Kendall. 1938. A new measure of rank correlation. Biometrika,
30(1/2):81�93.

A. Klementiev, D. Roth, and K. Small. 2008. Unsupervised rank aggregation
with distance-based models. In Proceedings of the 25th international confer-
ence on Machine learning, pages 472�479. ACM.

S. Kullback and R. A. Leibler. 1951. On information and su�ciency. Ann.
Math. Statist., 22(1):79�86.

M. Lapata. 2003. Probabilistic text structuring: experiments with sentence
ordering. In Proceedings of the 41st Annual Meeting on Association for Com-
putational Linguistics - Volume 1, pages 545�552. Association for Computa-
tional Linguistics.

G. Lebanon and J. La�erty. 2002. Cranking: Combining rankings using con-
ditional probability models on permutations. In In Proceedings of the 19th
International Conference on Machine Learning, pages 363�370.

Henry Lieberman, Hugo Liu, Push Singh, and Barbara Barry. 2004. Beating
common sense into interactive applications. AI Magazine, 25:63�76.

Dekang Lin. 1998. An information-theoretic de�nition of similarity. In In Pro-
ceedings of the 15th International Conference on Machine Learning, pages
296�304. Morgan Kaufmann.

D. J. C. MacKay. 2002. Information Theory, Inference & Learning Algorithms.
Cambridge University Press, New York, NY, USA.

C. L. Mallows. 1957. Non-null ranking models. Biometrika, 44:114�130.

Christopher D. Manning and Hinrich Schütze. 1999. Foundations of statistical
natural language processing. MIT Press, Cambridge, MA, USA.

Marina Meila, Kapil Phadnis, Arthur Patterson, and Je� Bilmes. 2007. Consen-
sus ranking under the exponential model. In 22nd Conference on Uncertainty
in Arti�cial Intelligence (UAI07). Vancouver, British Columbia.

Risto Miikkulainen. 1995. Script-based inference and memory retrieval in sub-
symbolic story processing. Applied Intelligence, pages 137�163.

Ashutosh Modi, Ivan Titov, and Alexandre Klementiev. 2012. Unsupervised
induction of frame-semantic representations. In Proceedings of the NAACL-
HLT 2012 Workshop on Inducing Linguistic Structure. Montreal, Canada.

R. M. Neal. 2003. Slice sampling. Annals of Statistics, 31:705�767.

Radford M. Neal. 1993. Probabilistic inference using Markov chain Monte Carlo
methods. Technical Report CRG-TR-93-1, Dept. of Computer Science, Uni-
versity of Toronto.

E. Ovchinnikova. 2012. Integration of World Knowledge for Natural Language
Understanding. Atlantis Thinking Machines. Atlantis Press (Zeger Karssen).

78 BIBLIOGRAPHY

B. O'Connor. 2012. Learning frames from text with an unsupervised latent
variable model. Data analysis project report, machine learning depart-
ment, Carnegie Mellon University. URL http://brenocon.com/oconnor_-

dap2012.pdf.

Simone Paolo Ponzetto and Michael Strube. 2009. Extracting world and linguis-
tic knowledge from wikipedia. In HLT-NAACL (Tutorial Abstracts), pages
7�8.

J. Pustejovsky, P. Hanks, R. Saurí, A. See, R. Gaizauskas, A. Setzer, D. Radev,
B. Sundheim, D. Day, L. Ferro, and M. Lazo. 2003. The TIMEBANK corpus.
In Proceedings of Corpus Linguistics 2003, pages 647�656.

Rajat Raina, Andrew Y. Ng, and Daphne Koller. 2006. Constructing informative
priors using transfer learning. In In Proceedings of the 23rd International
Conference on Machine Learning, pages 713�720.

M. Regneri, A. Koller, and M. Pinkal. 2010. Learning script knowledge with
web experiments. In Proceedings of ACL 2010. Association for Computational
Linguistics.

M. Regneri, A. Koller, J. Ruppenhofer, and M. Pinkal. 2011. Learning script
participants from unlabeled data. In Proceedings of RANLP 2011.

Roger C. Schank and Robert P. Abelson. 1975. Scripts, plans and knowledge.
In Thinking: Readings in Cognitive Science, Proceedings of the Fourth Inter-
national Joint Conference on Arti�cial Intelligence, pages 151�157. Tbilisi,
USSR.

Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim, Travell Perkins, and
Wan Li Zhu. 2002. Open mind common sense: Knowledge acquisition from
the general public. pages 1223�1237. Springer-Verlag.

M. Steyvers, M. D. Lee, B. Miller, and P. Hemmer. 2009. The wisdom of crowds
in the recollection of order information. In Advances in Neural Information
Processing Systems 19, pages 1785�1793. Curran Associates, Inc.

Ivan Titov and Alexandre Klementiev. 2011. A bayesian model for unsuper-
vised semantic parsing. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies,
pages 1445�1455. Association for Computational Linguistics, Portland, Ore-
gon, USA.

Ivan Titov and Alexandre Klementiev. 2012. A bayesian approach to unsu-
pervised semantic role induction. In Proceedings of the Conference of the
European Chapter of the Association for Computational Linguistics, pages
12�22. Avignon, France.

