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Abstract

The ability to organize concepts (e.g., dog, chair) into efficient mental representations,

i.e., categories (e.g., animal, furniture) is a fundamental mechanism which allows hu-

mans to perceive, organize, and adapt to their world. Much research has been dedicated

to the questions of how categories emerge and how they are represented. Experimen-

tal evidence suggests that (i) concepts and categories are represented through sets of

features (e.g., dogs bark, chairs are made of wood) which are structured into differ-

ent types (e.g, behavior, material); (ii) categories and their featural representations are

learnt jointly and incrementally; and (iii) categories are dynamic and their representa-

tions adapt to changing environments.

This thesis investigates the mechanisms underlying the incremental and dynamic for-

mation of categories and their featural representations through cognitively motivated

Bayesian computational models. Models of category acquisition have been extensively

studied in cognitive science and primarily tested on perceptual abstractions or artificial

stimuli. In this thesis, we focus on categories acquired from natural language stimuli,

using nouns as a stand-in for their reference concepts, and their linguistic contexts as

a representation of the concepts’ features. The use of text corpora allows us to (i) de-

velop large-scale unsupervised models thus simulating human learning, and (ii) model

child category acquisition, leveraging the linguistic input available to children in the

form of transcribed child-directed language.

In the first part of this thesis we investigate the incremental process of category ac-

quisition. We present a Bayesian model and an incremental learning algorithm which

sequentially integrates newly observed data. We evaluate our model output against

gold standard categories (elicited experimentally from human participants), and show

that high-quality categories are learnt both from child-directed data and from large,

thematically unrestricted text corpora. We find that the model performs well even un-

der constrained memory resources, resembling human cognitive limitations. While

lists of representative features for categories emerge from this model, they are neither

structured nor jointly optimized with the categories.

We address these shortcomings in the second part of the thesis, and present a Bayesian

model which jointly learns categories and structured featural representations. We

present both batch and incremental learning algorithms, and demonstrate the model’s

effectiveness on both encyclopedic and child-directed data. We show that high-quality

iii



categories and features emerge in the joint learning process, and that the structured

features are intuitively interpretable through human plausibility judgment evaluation.

In the third part of the thesis we turn to the dynamic nature of meaning: categories and

their featural representations change over time, e.g., children distinguish some types

of features (such as size and shade) less clearly than adults, and word meanings adapt

to our ever changing environment and its structure. We present a dynamic Bayesian

model of meaning change, which infers time-specific concept representations as a set

of feature types and their prevalence, and captures their development as a smooth pro-

cess. We analyze the development of concept representations in their complexity over

time from child-directed data, and show that our model captures established patterns of

child concept learning. We also apply our model to diachronic change of word mean-

ing, modeling how word senses change internally and in prevalence over centuries.

The contributions of this thesis are threefold. Firstly, we show that a variety of ex-

perimental results on the acquisition and representation of categories can be captured

with computational models within the framework of Bayesian modeling. Secondly,

we show that natural language text is an appropriate source of information for model-

ing categorization-related phenomena suggesting that the environmental structure that

drives category formation is encoded in this data. Thirdly, we show that the experi-

mental findings hold on a larger scale. Our models are trained and tested on a larger

set of concepts and categories than is common in behavioral experiments and the cat-

egories and featural representations they can learn from linguistic text are in principle

unrestricted.
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Lay Summary

Humans represent their knowledge about the world around them as categories, which

allow them to efficiently learn about, understand, and interact with their surroundings.

Concepts (such as objects or actions) are grouped into categories based on common

features. For example, sparrows and finches are members of the category bird, because

they share features such as their appearance (they have wings and feathers), and their

behavior (they can fly, they sing). Established categories can be used to generalize:

Observing an unknown creature with feathers that sings and flies allows to infer that

it is likely a kind of bird, based on the established knowledge about that category.

Categories are fundamental cognitive building blocks: they determine how humans

perceive and interact with the world.

Previous research has established three important characteristics of category learning.

First, categories are learnt incrementally. Humans observe input over time and inte-

grate the information from those observations into their category knowledge imme-

diately, incrementally improving their representations. Secondly, categories and their

associated features are learnt together and mutually improve each other: Knowing that

both birds and finches are members of the category bird helps to extract representative

features for the category. At the same time, knowing that having feathers is a feature

of all members of the category bird helps to categorize unfamiliar objects. Thirdly,

categories and their features are flexible and adapt over time. For example, expert ed-

ucation in ornithology establishes increasingly specialized features which may change

the representation of members of the bird category.

In this thesis we study the three phenomena described above using techniques from

computational modeling. Traditionally, human learning has been investigated in lab-

oratory studies where participants were given a task, for example to learn categories

from a small set of artificial objects, and their behavior was carefully analyzed. The

tasks and objects involved in laboratory studies are often overly simplistic, and do not

capture the complex environment humans are exposed to and learn from. Computa-

tional modeling provides an alternative to laboratory studies for investigating cogni-

tive processes. We develop computer programs that simulate the learning process from

input data. The programs and the input are systematically manipulated to explore con-

ditions that must be met for successful learning. Moreover, our computational models

investigate learning on a large scale and from complex data.
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Specifically, our models learn from natural language texts which are available in large

quantities and discuss many aspects of concepts. Exposing our models to naturalistic

data allows us to simulate learning for a broad range of categories and their representa-

tive features. In addition, language plays an important role during category learning in

infants. We study child category acquisition by training our computational models on

child-directed language (i.e., collections of child-directed language from parent-child

interactions).

The first part of this thesis introduces a model which learns categories incrementally,

consistently improving the categories while receiving new information over time. We

train our model using both general (news) text and child-directed language and show

quantitatively and qualitatively that high-quality categories emerge. Our model, how-

ever, does not learn representative features together with the categories. We address

this shortcoming in the second part of the thesis, where we present a model which

learns categories and their features in one process. We evaluate the categories and fea-

tures emerging from (a) general (encyclopedic) text and (b) child-directed language,

and show that meaningful categories and features emerge in both settings. In the fi-

nal part of the thesis we investigate the development of meaning representations over

time. We explore how concept representations develop with increasing age and general

knowledge in children. We also investigate how word meaning changes over centuries

by applying our model to collections of texts covering multiple centuries.
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Chapter 1

Introduction

From day one, infants are exposed to a complex world of objects, humans, and their

interactions. They need to acquire an extraordinary amount of knowledge in order to

be able to comprehend their environment and react meaningfully to it. Not only in

childhood, but throughout their lives, humans continue to experience novel concepts,

problems and situations on a daily basis. How do they acquire and represent the knowl-

edge that allows them to understand and interact with the world? Structured mental

representations, in terms of categories have been shown to underlie fundamental cog-

nitive abilities and influence the way humans perceive and react to their environment.

This thesis investigates how categories are acquired, how they are internally repre-

sented and how these representations change over time.

Categories are fundamental cognitive building blocks allowing humans to organize

their knowledge, and make inferences about the world (Rosch, 1978; Medin and Schaf-

fer, 1978; Murphy and Medin, 1985). We investigate the acquisition and representation

of superordinate level CATEGORIES, as collections of taxonomically coherent basic

level concepts (Rosch, 1978).1 Categories (such as FOOD or ANIMAL) are groups of

concepts (such as apple or cat) which share important properties. Examples of such

properties include their appearance (apples and kiwis contain seeds), their function

(apples and kiwis are edible), or their behavior (cats and dogs eat and play). Estab-

lished categories enable generalization and inference: by extrapolation from estab-

lished knowledge about FRUIT, one can infer that an unfamiliar object with a sweet

smell and seeds inside is likely edible. Table 1.1 summarizes the terminology and

1Throughout this thesis we use the term ‘category’ to refer to superordinate level categories, and
‘concept’ to refer to basic level categories.
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2 Chapter 1. Introduction

Term Explanation Example

concept living- or non-living thing (basic level category) pear, cat, train

category taxonomically coherent set of living- or non-

living things (superordinate level category)

FRUIT, ANIMAL,

VEHICLE

feature individual properties of a concept {eats, is_furry}

feature type class of properties appearance,

behavior

stimulus mention of a concept in a linguistic context “Cats are furry.”

Table 1.1: Overview of the terminology used in the thesis. We denote concepts in

italics, CATEGORIES as small caps, feature types as true type, and {features} as

lists.

typography used throughout this thesis.

Understanding the process with which categories and their representations are formed,

has been the subject of significant research efforts both from a behavioral and modeling

perspective. Prior research on category learning has often involved a small set of artifi-

cial stimuli such as binary strings, or purpose-built objects (Anderson, 1991; Bornstein

and Mash, 2010), containing a limited number of prominent features. Humans, how-

ever, are constantly confronted with myriads of different concepts; just consider the

number of objects a child interacts with at home. Furthermore, observations of con-

cepts are often noisy or incomplete. Humans are capable of detecting and filtering

noise, distinguishing relevant features from irrelevant ones. Moreover, humans ob-

serve concepts in context, and use the context to infer complex and structured featural

representations (Murphy and Medin, 1985). Prior research has predominantly focused

on adult categorization, assuming that learners have developed categorization mecha-

nisms and a large number of categories have already been learnt. Children, however,

learn categories “from scratch”, with access neither to prior category knowledge, nor

to sophisticated input processing abilities such as language parsing. It is not clear that

results from small-scale studies extend to more natural settings where a large number

of categories is being acquired and complex representations must be formed in the face

of noisy, naturalistic input and under cognitive constraints such as memory limitations.

This thesis investigates the acquisition and representation of categories from natural-

istic input at scale. Specifically, we consider three tasks: Firstly, we look at the in-
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cremental process of category acquisition (Bornstein and Mash, 2010); secondly, we

model the joint acquisition of categories and structured features (Goldstone et al.,

2001; Ahn, 1998); thirdly, we investigate how concept representations develop over

time (Keil, 1987; Schyns et al., 1998; Aitchison, 2001). We approach these questions

from a modeling perspective, and train and test our models on linguistic input. We

expose our models to natural language stimuli extracted from large text corpora in an

attempt to approximate (a) the number of categories and features acquired in a realistic

setting; and (b) the complexity and richness of the learning environment. We inves-

tigate category acquisition from large corpora of general text (e.g., encyclopedic text

or news). In addition, we expose our models to child-directed language, modeling the

specific problem of category and feature acquisition in infants.

Why computational cognitive modeling? Computational models shed light on cogni-

tive processes at scale, and make predictions which can be tested empirically. They

impose constraints on the cognitive processes under investigation, and learn from ex-

posure to input. The constraints and the input can be manipulated to systematically

explore aspects of human cognition in general, and categorization in particular. Specif-

ically, we develop models of category acquisition within the framework of Bayesian

modeling. Bayesian models provide a mathematically principled way of formalizing

constraints and processes, and have been shown to accurately describe a variety of

cognitive phenomena (see e.g., Chater et al. 2010). Computational models provide an

opportunity to investigate cognition on a larger scale than behavioral experiments. The

majority of previous categorization and feature acquisition models either replicate hu-

man categorization behavior under simplistic conditions in the laboratory (Anderson,

1991; Sanborn et al., 2006), or are trained on rich and multimodal input, but evaluated

on small-scale problems (Yu, 2005; Frank et al., 2009). This thesis capitalizes on the

opportunities that computational modeling provides for investigating the process of the

acquisition and development of a large number of categories and complex features.

Why natural language input? We train and test our models using natural language

stimuli, representing observations of concepts as their mentions in text. Figure 1.1

illustrates our representation of concepts. Our choice of representation is motivated

by prior research which showed that linguistic input plays an important role during

child category acquisition (e.g., Waxman and Markow 1995). Furthermore, much of

the structure of our environment is redundantly encoded in language (Riordan and

Jones, 2011). Each observation, or stimulus, consists of the mention of a concept
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Concept Natural Language Stimuli
ca

t “Cats are furry.”

“Cats are carnivores.”

“Cats have tails and whiskers.”

“The cat says meow!”

do
g “The dog has nice fur.”

“Dogs eat meat.”

“Dogs have tails.”

“Look, the dog is playing!”

ap
pl

e “I’d like to eat an apple.”

“Apples grow on trees.”

“Apples can be red or green.”

“An apple contains seeds”

ki
w

i “This kiwi is tasty.”

“Kiwis are green inside.”

“Can you cut me a kiwi?”

“Kiwis have seeds.”

Figure 1.1: Illustration of natural language stimuli provided as input to the models

presented in this thesis. Each stimulus contains a mention of a concept (e.g., cat or

apple) in its local linguistic context. Concepts are clustered into categories (e.g., ANIMAL

or FRUIT) based on the similarity of the contexts they occur in.

in local context. Linguistic context serves as a representation of the concept’s fea-

tures comprising potentially diverse properties such as perceptual, relational, or other

knowledge-based associations. Indeed, it has been shown that child-directed language

comprises substantial explicit explanation of non-perceivable features shared among

members of categories (Callanan, 1990). The idea that the meaning of a word is char-

acterized by the contexts in which it occurs is well-established as the distributional

hypothesis (Harris, 1954). In this thesis we extend the distributional hypothesis, as-

suming that linguistic context is predictive of a word’s category. Our models group

concepts into categories based on the similarity of the contexts in which they appear.

Classically the term features has been used to refer to lists of necessary and sufficient

properties of concepts which have the explicit purpose of defining category member-

ship. Rather than assuming that linguistic context comprises features in the classical

sense, we view the features induced by our models as properties which are associated

with concepts and categories. Concept and category associates have been collected as

verbal descriptions of relevant properties of concepts and categories, and have been

argued to provide a window into the cognitive representations of concepts in the brain.

Typically, such descriptions are collected through feature norming studies (e.g., McRae

et al. (2005); Vinson and Vigliocco (2008)) where participants are asked to produce a

set of relevant properties of a target concept. Feature norms have been shown to ex-

plain a variety of cognitive phenomena and to provide valuable input to computational
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cognitive models. The work presented in this thesis replaces feature norms with rep-

resentations derived from concept mentions in contexts in corpora. We assume that

words whose referents exhibit differing features are likely to occur in correspondingly

different contexts and that these differences in usage can provide an approximation of

featural associates. In the context of discussion of the models presented in this thesis,

we use the term feature interchangeably with associate.

The work in this thesis does not address the problem of word learning which involves

learning a lexicon mapping from words to referent concepts. Instead, we equate words

with concepts, assuming that words themselves are instantiations of their referents. In

addition, we make the simplifying assumption that concepts and their verbal realization

as a written string of letters have a one-to-one correspondence which is known a priori

(e.g., the written word ‘dog’ always refers to the concept dog and no other word type

refers to the same concept). Our models learn to group concepts into categories based

on featural commonalities which are acquired through repeated observations of con-

cept instances. In that sense we adopt a cross-situational learning framework (Siskind,

1996).

1.1 Contributions

This thesis investigates a range of category-acquisition phenomena within the unified

framework of Bayesian modeling from naturalistic input on a large scale. Our contri-

butions are:

Naturalistic processes. We develop three novel Bayesian models which reproduce

four phenomena of human category acquisition and their mental representations which

have been established in prior research: Firstly, categories are acquired incrementally

(Chapter 4). Secondly, categories and their features are learnt jointly (Chapter 5).

Thirdly, feature representations of categories are structured (Chapter 5). Fourthly, fea-

tural representations are dynamic and flexibly adapt to changes in the learner’s knowl-

edge or environment (Chapter 6). Our models are designed to capture these phenomena

in the context of category acquisition in children. They learn categories “from scratch”

without initial categorization knowledge and advanced data processing abilities, which

young infants do not possess. To the best of our knowledge our work is the first to
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investigate the joint emergence of features with categories, and their dynamic devel-

opment over time at scale from naturalistic input. We formalize the above processes

within the unified and principled framework of Bayesian modeling. We qualitatively

and quantitatively demonstrate the effectiveness of incremental and joint category and

feature learning, showing (a) that our models fit incremental human category learning

more closely than a previously proposed graph-based model of incremental category

learning; and (b) that they learn features which are more interpretable compared to

those produced by a knowledge-heavier but cognitively less plausible model of feature

extraction from text. Our results provide further evidence to the claim that humans

acquire categories by aggregating information over time and by establishing represen-

tations which describe their environment increasingly accurately.

Naturalistic input. We show that the above phenomena emerge from our models

trained on linguistic stimuli (i.e., mentions of concepts in context; see Figure 1.1).

Stimuli are extracted from natural language corpora, which can be noisy or contain

irrelevant information. Taken together, the results presented in this thesis reveal that

our models are able to detect and represent those aspects which are relevant to concept

meaning. They are also able to learn meaningful and richly structured features, which

demonstrates that the linguistic stimuli contain rich information about different aspects

of properties of concepts. Our models learn categories and their representations from

different forms of linguistic input. We learn broad-scale categories from general (news

or encyclopedic) text. In addition, we show that our models capture the emergence,

representation, and dynamic development of categories and their representations from

child-directed language demonstrating that our models capture aspects of category ac-

quisition in infants.

Naturalistic scale. We present our models with large sets of linguistic stimuli in

an attempt to approximate the scale and complexity of the environment humans ex-

perience. We evaluate the categories inferred by our models against a cognitive gold

standard categorization comprising more than 500 target concepts of more than 50 cat-

egories. The contexts of our language stimuli are thematically unrestricted in principle,

covering a wide range of properties. In this regard, our models learn from rich feature

representations approximating the variety of contexts in which concepts are observed

in the real world. They model human category acquisition under more realistic condi-
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tions than previously proposed models of small-scale category learning from artificial

stimuli. We show that Bayesian models of categorization extend to learning problems

of naturalistic scale and that Bayesian modeling is a fruitful framework for testing

hypotheses about category acquisition, structure, and development.

Relevance for AI and NLP. Beyond the motivation of scientific discovery, under-

standing human category acquisition may lead to improved mechanisms for artificial

intelligence (AI). Humans acquire complex conceptual knowledge, which they then

use to understand and reason about the world, highly efficiently and reliably. The

ability of machines to represent conceptual knowledge pales in comparison. If human

cognition was understood to an extent that allowed implementation in machines, the

performance gap could be bridged. The three cognitively motivated computational

models introduced in this thesis efficiently learn high-quality categories and their rep-

resentations, and provide a step towards this goal.

By learning structured knowledge from language input, our models are relevant to the

field of natural language processing (NLP), where much research has been dedicated

to automatic extraction of information from text. We compare our models against ex-

isting models from NLP on tasks including feature extraction from text, and capturing

the change of word meaning over centuries. Unlike some of these prior models, our

models are knowledge lean (they do not require sophisticated linguistic pre-processing

or access to informed prior knowledge), and yet they still perform competitively. The

knowledge-lean nature also makes our models straightforwardly applicable to texts

across different genres (e.g., text from social media) and languages.

1.2 Thesis Outline

Chapter 2 reviews previous research on category acquisition from an experimental

and computational perspective. The first part of the chapter summarizes experimental

evidence for strong links between category acquisition and word learning. In the sec-

ond part of the chapter we position our work with respect to existing computational

models of word learning and category acquisition. We discuss existing models in the

context of their representation of the learning environment, and the influence it has on

the scope of learning problems which can be feasibly modeled.
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Chapter 3 introduces Bayesian modeling, the mathematical foundations underlying

the models presented in this thesis. We motivate Bayesian modeling as a framework for

investigating cognitive phenomena. The second part of the chapter reviews the mathe-

matical paradigm of Bayesian statistics, and the ideas underlying generative Bayesian

modeling. We conclude with an overview of Monte Carlo-based sampling methods for

approximate Bayesian inference.

Chapter 4 introduces BayesCat, a Bayesian model for large-scale category acquisi-

tion. We model category acquisition as an incremental process, and investigate the

effect of an incremental learning algorithm (by comparison to an ideal batch learner),

as well as computational and memory constraints on the learning process and outcome.

We study the incremental process of category acquisition by evaluating our model on

a large corpus of general texts and on transcribed child-directed speech.

Chapter 5 zooms into specific phenomena of category acquisition: the joint emer-

gence of categories and their features in a single process, and the structured nature of

cognitive representations, as feature types. We present BCF, a Bayesian model which

jointly learns categories and their structured representations. We evaluate the qual-

ity of the categories and feature representations learnt by our model when exposed to

large-scale encyclopedic data. We show that our knowledge-lean, cognitively moti-

vated model performs competitively with a feature extraction model that presupposes

a hand-crafted set of rules based on substantial linguistic knowledge. In the second

part of the chapter, we investigate the incremental, joint learning process of categories

and features in children, applying our model to a corpus of transcribed child-directed

speech.

Chapter 6 is concerned with the dynamic nature of meaning, and presents SCAN,

a dynamic Bayesian model of semantic change. The first part of the chapter inves-

tigates how structured concept representations develop and improve over the course

of concept acquisition in infants by applying our model to a corpus of transcribed

child-directed speech. The second part of the chapter applies SCAN to the task of cap-

turing diachronic meaning change: word meanings change over time and adapt to their

speakers’ environment. We expose our model to diachronic text corpora and show

that it captures a variety of aspects of word meaning change over centuries, and that it
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performs competitively compared to a range of previously proposed problem-specific

models across tasks.

Chapter 7 summarizes our main findings, discusses limitations of our work, and

points out directions for future research.

1.3 Published Work

Portions of this thesis have been published previously. The model and experiments

presented in Chapter 4 are published in Frermann and Lapata (2015b). A preliminary

version of this work was published in Frermann and Lapata (2014). Our work on

joint category and feature learning from encyclopedic data (Chapter 5) is published

in Frermann and Lapata (2015a). The work on diachronic change of word meaning

presented in Chapter 6 is published in Frermann and Lapata (2016).





Chapter 2

Learning Words and Categories

Young children are incredibly efficient learners, and the circumstances and processes

underlying the rapid process with which they acquire the skills to interact with and talk

about their environment is one of the most widely studied areas in psychology and cog-

nitive science. Our work lies at the intersection of categorization, category- and word

learning, as well as the emergence and nature of structured featural representations of

categories and concepts. Given the vast amount of prior work in each of these areas, a

complete review of prior work is beyond the scope of this thesis.

Infants start learning the meaning of words and the meaning of concepts and categories

around the same age, and a broad body of research suggests that the two processes are

closely entangled. In the first part of this chapter we provide an overview of these

studies and summarize their findings. We then discuss relevant computational models

of category and word learning. We review prior work on the featural representations of

concepts and categories, their emergence and development in the context of our own

models and experiments in Chapters 5 and 6.

Learning categories and learning words is a chicken-and-egg problem: Imagine an

infant at the onset of this endeavor hear the word “dog” while observing a situation

involving a small furry animal with a tail and two ears that says woof. In principle

there are countless potential meanings the child could infer: “dog” might refer to the

small furry animal; or to the stretch of land the animal is sitting on; or to its left ear;

or to the sound the animal is making; etc. If the child already had acquired conceptual

knowledge about the world (which would probably involve a DOG category comprising

‘furry living things with tails that say woof’, but not a LEFT EAR category), learning

11
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the meaning of the word “dog” would be simplified considerably. Conversely, knowing

that the word “dog” refers to small furry living things that run and say woof would

provide a strong cue for learning the correct conceptual category DOG (rather than a

different category, for example one that comprises living things that have particularly

prominent left ears).

Extrapolating from this rather contrived example to the complexity of the situations

and environments the child is confronted with from day one, the speed and reliability

with which children learn to talk and reason about the objects and persons surrounding

them seem stunning. The early development of conceptual and linguistic knowledge

has been under active research for decades. In the following we review prior behavioral

and computational studies which investigate the mutual influence of the two, as well

as the learning environment and processes from which they emerge.

2.1 Acquisition of Linguistic and Conceptual Knowledge

In this thesis, we propose models of category acquisition from natural language input,

which rest on the assumption that there is a strong relation between linguistic input

and emerging categories. Prior work discovered a range of phenomena and biases

in early child development which suggest that word learning and learning conceptual

categories mutually influence each other (Gopnik and Meltzoff, 1987; Waxman and

Markow, 1995; Borovsky and Elman, 2006). The age at which such biases emerge,

their specificity to word learning, and the precise mechanisms and direction of influ-

ence are subject to considerable debate in the literature, however, their existence has

been repeatedly demonstrated in a wide range of studies. Our aim here is to discuss

their impact on language and category acquisition.

Linking Words to Objects and Concepts General constraints or biases which guide

children at the onset of language acquisition in their hypotheses about potential refer-

ents for a novel word have emerged in behavioral experiments over the last decades.

Learning a novel word involves (a) mapping the word to a referent (in this review we

focus on common nouns referring to objects in the child’s environment); and (b) to gen-

eralize the meaning beyond the particular situation. For the former challenge children

have been shown to assume that unfamiliar words refer to whole objects rather than
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their parts or properties (whole-object constraint, Markman 1991; Hollich et al. 2007),

while the generalization problem is influenced by the taxonomic constraint (Markman

and Hutchinson, 1984; Markman, 1994). The taxonomic constraint refers to the obser-

vation that linguistic labels shift children’s preference from grouping objects themati-

cally (e.g., cows and milk) towards grouping objects taxonomically, by kind (e.g., cows

and pigs). Markman and Hutchinson (1984) presented children with an initial object

(e.g., a cow) and two related objects one of which is thematically related (e.g., milk)

and the other is taxonomically related (e.g., a pig). They investigated the relations chil-

dren form in two conditions: in the first condition they provided no label for the initial

object (“See this? Can you find another one?”). Children selected the thematically re-

lated object (i.e., milk) much more often than the taxonomically related object. In the

second condition, the initially provided object was labeled with a novel term (“See this

dax? Can you find another dax?”). Children’s preferences shifted towards selecting the

taxonomically related object (i.e., the pig). This effect has been shown across a variety

of studies and paradigms for children as young as 18-months old (Markman, 1991).

The fact that linguistic labels influence the type of inferences children make about

relations among objects strongly suggests that language input has an impact on how

categories are learnt and represented. Beyond results emerging under laboratory con-

ditions, further evidence for this phenomenon comes from the general patterns of chil-

dren’s linguistic and conceptual development: it has been shown that children’s sudden

and rapid growth of noun vocabulary (the naming explosion) coincides with children

starting to sort objects into categories at an age of around 18 months (Gopnik and Melt-

zoff, 1987). Knowing linguistic labels for objects seems to help infants in constructing

and organizing their conceptual representations.

Another constraint on word learning has been put forward which encourages mutual

exclusivity of labels. Children have a strong preference to associate unfamiliar words

with objects for which they do not already know the label (Taylor and Gelman, 1988;

Markman, 1994; Xu, 2002). In a typical study, children are presented with two ob-

jects, one for which they already know the label (e.g., a doll) and an unfamiliar object

(e.g., tongs). When asked to “show the dax” (where “dax” is a novel label) children

are more likely to associate the label with the object for which they did not previously

know a word (i.e., they select the tongs, Markman and Wachtel 1988.)

The bias towards mutual exclusivity in word learning aligns with a similar tendency

concerning concepts and categories: categories are often mutually exclusive (for ex-
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ample, an object cannot be an animal and a fruit). Clearly this is not true in general

(for example, an object can be both a fruit and a food). However, children’s category

representations have been shown to strongly (over-)rely on this assumption of mutual

exclusivity. Children have difficulties to acknowledge and learn about inclusive or

overlapping categories, for example that an object can be at the same time a doll and a

toy (Markman, 1987).

The constraints introduced above provide strong cues for learning the names of objects.

But how do children move beyond this task, and learn to name object parts and proper-

ties? The mutual exclusivity constraint may be one factor which enables to learn word

meanings beyond object labels: If a novel word is used to refer to an object for which

the child already knows a label, she may infer that the term refers to one of its parts, its

material or another property related to the object instead. Hansen and Markman (2009)

show that children learn labels for parts of objects more readily if they already know a

label for the object itself, i.e., when mutual exclusivity information is available.

A similar effect has been shown for novel words of different classes, in children who

have acquired initial knowledge about linguistic word classes. Children use the lin-

guistic class of a word as a cue regarding potential types of referents. In his pioneer-

ing experiments, Brown (1957) presented children with different linguistic forms of a

novel nonsense word (sib), for example:

(2.1) Do you know what a sib is?

(2.2) Have you every seen any sib?

(2.3) Show me a picture of sibbing.

Children interpreted the novel word as a count noun (2.1), a mass noun (2.2) or an

action (2.3), respectively. This result has been replicated widely and has been shown to

hold for children as young as two years old (Markman, 1994; Hall et al., 1993), and for

words other than nouns: children expect unfamiliar adjectives to relate to properties of

objects, or to fine-grained distinctions on the subordinate level (Gelman and Markman,

1985; Waxman, 1990; Waxman and Markov, 1998). Similar effects have been shown

for compound nouns (such as grapefruit juice; Gelman et al. 1989). The linguistic

form of a novel word raises children’s expectations about possible meanings that word

might carry.
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Words as Invitations to Form Categories1 Given the general connection between

language and concepts, we can now zoom in more closely on the problem addressed

in this thesis: The emergence of superordinate2 level categories such as ANIMAL or

FURNITURE as groups of basic level categories (e.g., dog, chair) from natural language

input. Basic level categories resemble the perceivable structure of the world. As a

consequence, basic level categories (a) tend to refer to concrete objects in the world; (b)

are based on salient immediately perceivable features, such as shape, material or color;

and (c) are internally homogeneous so that members of the same basic level category

share many features while at the same time their features separate them clearly from

members of different basic level categories (Rosch et al., 1976). They are cognitively

most salient, and are acquired earliest by children (Rosch, 1973, 1978).

While non-linguistic (e.g., visual) cues provide a strong signal for the acquisition of ba-

sic level categories, superordinate level categories tend to be abstract groupings which

are less obviously coherent. Their meaning is often explained through underlying

features which are not immediately noticeable (e.g., ANIMALS breathe, TOOLS have

a function). While it seems straightforward to define the basic level category chair

through a set of observable features, it is difficult come up with a succinct set for the

superordinate category FURNITURE. Given this level of abstraction, does language

play a central role in superordinate level category acquisition?

A range of studies have investigated the influence of linguistic labels on the acqui-

sition of different levels of categories and reliably found that labels are particularly

advantageous (and possibly essential) for the acquisition of superordinate level cate-

gories (Waxman and Markow, 1995). Waxman (1990) shows that giving objects noun

labels significantly improves preschoolers’ ability to categorize objects on the super-

ordinate level. 3-4-year old preschoolers were introduced to ‘a very picky doll’ who

likes only objects of a particular kind. The kinds of objects the doll liked were ei-

ther of the same superordinate level category (e.g., all animals), or of the same basic

level category (e.g., all dogs) or of the same subordinate level category (e.g., all col-

lies). Two conditions were compared: either objects the doll likes are not labeled (“she

likes this and this and this”), or the objects are labeled with a ‘novel’ label (a Japanese

1Caption borrowed from Waxman and Markow (1995).
2As mentioned earlier, we refer to superordinate level categories as ‘categories’, and to basic level

categories as ‘concepts’. For the purposes of this thesis the respective terms are considered synonyms
and used interchangeably. We use the traditional terms of basic- and superordinate level categories more
heavily in this chapter so that relations to the literature are clear.
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noun: “she likes dobits”). Three findings emerged. First, children categorize basic

level objects in the unlabeled condition with high accuracy and the availability of a la-

bel did not lead to improved performance. Secondly, noun labels had a negative impact

on subordinate level categorization performance (however, adjective labels (“she likes

dob-ish ones”) were shown to improve subordinate level categorizations (Waxman,

1990, Experiment 3). Finally, children’s superordinate level categorizations improved

significantly with available noun labels for objects. In a similar study, Waxman and

Markow (1995) showed identical effects in 12-13-month old infants: infants were only

able to form superordinate categories when a linguistic label was provided, whereas

they formed basic level categories irrespective of whether objects were labeled or not.

These results suggest that linguistic cues influence the acquisition of abstract concep-

tual knowledge which is not immediately reflected in the learner’s perceptual envi-

ronment. But, does the fact that children are able to group objects into superordinate

categories under some conditions mean that they fully conceptualize the underlying

meaning of that category? Almost certainly not. Much of this representation is highly

structured and dependent on substantial world knowledge (Keil, 1987; Gelman and

O’Reilly, 1988). Chapters 5 and 6 address the emergence and development of featu-

ral representations of concepts and categories. We review prior research on how this

knowledge develops in infants in Sections 5.1.1 and 6.1.1.

In order for these rich representations to emerge, linguistic input likely plays a role that

goes beyond providing labels (Gelman and Keil, 1998). While basic level categories

are remarkably stable across cultures, sub- and superordinate level categories tend to

be culturally informed and are thus more strongly based on conventions rather than on

shared perceptual features (see Malt (1995) for a review of both psychological and an-

thropological perspectives). In order to discover these conventions explicit instruction

may be crucial. For example, it seems intuitively plausible to categorize cars based on

their color or size, however, cars are conventionally categorized based on features such

as their manufacturer, power of their engines, or type of fuel they require. Clearly such

categories are difficult to learn from purely perceptual input. Instead, “[w]e need some

sort of indication from those who participate in the culture of the things they treat as

equivalents and those that are distinguished.” (Brown, 1958, p. 208).

Indeed, adults tend to explicitly explain and point to commonalities of members of

superordinate categories (Callanan, 1990). This study found systematic differences in

descriptions of basic- and superordinate level categories by adults addressing their 2-
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to 4-year old children. While basic level categories were described predominantly in

terms of their perceptual properties, parents explicitly pointed out abstract functions

and relations pertaining to superordinate level categories. We assume that natural lan-

guage stimuli used in experiments throughout this thesis encode this kind of input,

and consequently usefully approximate the environment of a child learning categories.

A second aspect of this learning environment as encoded in linguistic stimuli is the

amount of ‘training’ exemplars children typically encounter. In the labeling studies

discussed above, the influence of linguistic labels might have been over-emphasized

by the scarcity of training data (although the results suggest that labels allow particu-

larly efficient learning under these circumstances (Waxman and Markow, 1995)).

This thesis investigates the acquisition and development of categories and their repre-

sentations from natural language input. We assume that this input encodes a substantial

amount of the information that is necessary to learn categories. The body of work dis-

cussed in this section has shown that conceptual knowledge and language exert mutual

influence, and that language input is particularly important for learning higher-level

conceptualizations. Constraints on potential word meanings are driven by general con-

ceptual constraints and world knowledge (e.g., the tendency for every object to have

only one label parallels the general fact that categories tend to be mutually exclusive).

Conversely, the emergence of higher-level conceptual knowledge is driven by linguis-

tic labels and explanations which guide the learner’s attention to relevant information,

inviting the learner to form categories (Waxman and Markow, 1995).

Clearly, however, language is not the only source of information available to young

children for the category and word learning process. We now widen our scope and

discuss other modalities and cues children exploit for this task. We introduce these

modalities in the context of computational models of category- and word learning

which leverage different subsets of them. We also discuss the influence of different

representations of the learning environment on the scope and kinds of learning phe-

nomena that can be feasibly simulated by computational models.

2.2 Models of Word and Category Learning

Given the substantial body of work on child word and category learning in experimen-

tal psychology and cognitive science, it comes as no surprise that a wide variety of cog-
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nitively motivated computational models have been proposed over the years which aim

to shed light on the process through ‘reverse-engineering’ the learner. Computational

cognitive models implement and simulate a cognitive process, including assumptions

about its mechanism and constraints, and allow to systematically examine the effects

of different constraints or quantities and characteristics of the input.

We discuss models for both word learning and category learning, given their close

relation in both theoretical and computational prior work. Word learning is typically

modeled as inferring a lexicon mapping from words to real-world referents and is thus

conceptually similar to the problem of inducing a categorization. Here, we review

models on a high level, and frame our discussion around the assumptions, motivations

and limitations underlying the models proposed in this thesis. Technical details for

relevant related models are included in Chapters 4–6 in the context of our own models

and experiments. We discuss previous work from two angles: first we look at how

the learning environment of the human learner is captured in the input representations

provided to the computational models, and discuss the impact these representations

have on the scale of the learning problem under investigation. Secondly, we discuss

the process of human learning and ways in which previous computational models have

captured its characteristics and constraints.

2.2.1 Input Modalities in Word and Category Learning

The Multimodal Learning Environment Linguistic input, which was the focus of

the previous section, is not the only source of information children receive when they

learn words and categories; nor does this learning process happen in isolation: the

whole physical environment is rich in cues and highly informative, and together with

linguistic and conceptual expertise infants acquire social and motor skills, which en-

able them to interpret and interact with their environment. In addition, learning is

a long-term endeavor: children exploit the fact that words and scenes are repeatedly

co-observed over time. Words in child-directed speech refer disproportionally often

to objects in the immediate environment. Children use such repeated object-word

co-occurrences as cues towards possible referents for labels – a strategy referred to

as cross-situational learning (Siskind, 1996; Frank et al., 2007; Yu and Smith, 2010;

Kachergis et al., 2014).

A variety of models of cross-situational word learning have been proposed (Siskind,
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(a) Illustration of the stimuli used in Yu (2005). Image and utterance from Yu et al. (2005).

example + “The cow is looking at the

little boy.”

data six adults narrating a picture book

input tuples of

transcribed child-directed utterances
features extracted of images from head-mounted camera

test set lexicon over the set of 12 animals featured in the picture book

(b) Illustration of the stimuli used in Frank et al. (2007, 2009). Image from Frank et al. (2007), utterance

added for illustration.

example + “Oh, look, a book!”

data two 10-minute audio and video recordings of mother-child interactions

involving a fixed set of toy objects

input tuples of


transcribed child-directed utterances
objects visible to the infant (cf., example)
social cues (e.g., gaze of mother and infant; cf., example)

test set lexicon over 12 toy objects

(c) Illustration of stimuli used in this thesis. Concept mentions are highlighted in italics in the examples.

example “is there a train running on this track”, “don’t pull the dog’s tail”,

“the ginger pussy cat’s called fur ball”, “i found the apple in the bowl”

data linguistic mentions of concepts in local context from text corpora

input transcribed child-directed utterances

test set > 40 categories comprising > 300 concepts

Figure 2.1: Overview of stimuli used in selected models of word learning from multi-

modal data (2.1a, 2.1b), and a comparison to the stimuli used in this thesis (2.1c).
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1996; Roy and Pentland, 2002; Yu, 2005; Frank et al., 2007). Yu (2005), for example,

propose a model for cross-situational learning of both words and categories from mul-

timodal data, comprising both language and visual input. Their model is based on a

three-step process involving (1) recognizing visual features from raw images, (2) clus-

tering those features into visual prototypes, and (3) associating visual prototypes with

words from the linguistic input. Input to the model were utterance-image pairs orig-

inating from a data set of adults narrating picture books. Individual utterances were

paired with raw images taken from a head-mounted camera. The model was evaluated

on its ability to induce a lexicon over a set of 12 animals featured in the picture book.

The stimuli are illustrated in Figure 2.1a.

Furthermore, children have access to information that goes beyond signal input in var-

ious modalities. Even pre-verbal infants are remarkably proficient in interpreting and

responding to social cues from the adults they interact with: children interpret intents

and follow pragmatic cues (Akhtar and Tomasello, 2000; Csibra and Gergely, 2006).

Adults make heavy use of such hints when directing children’s attention to objects

of interest, i.e., by establishing joint attention (Yu and Smith, 2016) and employing

different strategies such as prosodic cues, gaze (Yu and Smith, 2007), or actions and

gestures like pointing (Yu et al., 2009; Gogate et al., 2000).

These insights have been incorporated in computational models. Yu and Ballard (2007)

present a model which learns from audiovisual input stimuli of mother-child interac-

tions which includes both statistical cues from cross-situational occurrences as well

as pragmatic cues: each input is labeled with the object of joint attention of mother

and child as well as prosodic saliency of words. Their learning algorithm is based

on techniques from machine translation, assuming that the child learns a mapping (or

translation) from English to an abstract ‘meaning language’. They demonstrate the

benefit of pragmatic information for a computational word learner.

Methodologically more closely connected to our own approach, Frank et al. (2007,

2009) propose a Bayesian model incorporating social cues in cross-situational word

learning. The input to their model consists of transcribed speech from mother-child

interactions paired with a representation of the child’s visual field in the form of a

list of objects present in the environment, as illustrated in Figure 2.1b. Their model

jointly learns words (as a dictionary of word-object mappings) as well as to interpret

the intended meaning of the speaker (i.e., the object in the environment the speaker is

referring to) – without the need to explicitly encode this information in the input as
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in Yu and Ballard (2007). They show that their joint model not only learns precise

lexicons, but also predicts behavioral phenomena such as mutual exclusivity or the use

of learnt words for object individuation.

The models discussed so far learn on the basis of a faithful representation of the child’s

multimodal learning environment, however, the detailed representations come at the

cost of a limited scale: all models are evaluated on test sets involving only a handful

of target referents and highly restricted input vocabularies. We illustrate the quality

and size of the input and evaluation data sets involved in some of the studies discussed

above in Figure 2.1. While the quality of the input resembles a child’s learning en-

vironment, its quantity and complexity does not. Unfortunately, the availability of

multimodal data as discussed above is limited and potential further annotations are

costly (Frank et al., 2013). It is not clear whether the results still hold with learning

problems which are larger in scale, or more complex learning environments such as

cluttered scenes. Multimodal corpora available to-date contain short periods of inter-

action, and consequently do not capture the long-term process of word and category

learning.3

Learning from Natural Language Input In the experiments in this thesis, we take

a step back from a fully, multimodal representation of the learner’s environment and

instead use large-scale text corpora as input data to our models. Corpora of natural

language texts are available in substantial quantities, and the CHILDES database pro-

vides a collection of child-directed speech corpora (MacWhinney, 2000). Much of the

data consists of transcribed speech resulting from natural interactions of children with

their care-takers.

Aside from quantitative motivations, qualitative analyses of linguistic text in gen-

eral, and child-directed language in particular, revealed that a surprising amount of

non-linguistic information is redundantly encoded in language. Riordan and Jones

(2011) compare text-based distributional semantics models against models based on

human-created feature listings on a semantic clustering task. Feature listings en-

code diverse information covering multiple modalities (such as visual and functional

features, McRae et al. 2005). Purely text-based models performed comparatively

3Recent efforts have been made, to create a highly dense longitudinal and multimodal data base
of the linguistic development of a single child, by equipping his home with cameras and microphones
which constantly monitor his (and his caretakers’) development (Roy et al., 2006, 2012). But to this
date the data is not publicly available.
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to feature-based models, even though they lack the advantage of such rich human-

generated knowledge. A comparison of text-based models with models based feature

listings encoding sensorimotor knowledge available to children even showed that both

systems perform on par when evaluated on child-directed speech data. This may be

due to the fact that child-directed speech overwhelmingly addresses the ‘here-and-

now’, i.e., objects, properties or actions of the immediate environment (Veneziano,

2001) and consequently encodes a lot of the information which is also captured in

other input modalities (e.g., the visual scene). Fountain and Lapata (2010) show that

natural language input is informative for the specific problem of category learning.

Fazly et al. (2010) propose a computational model for cross-situational word learning

from large corpora of child-directed utterances, paired with automatically generated

semantic descriptions of the scene. These descriptions are sets of abstract symbols

corresponding to the spoken words, interspersed with slight disturbances to simulate

noise in the learning environment as well as referential uncertainty. Similar to our own

child category acquisition experiments, their input is derived from large, longitudinal

corpora of mother-child interactions, which allows them to train their model on 20,000

utterances which cover a wide variety of words and objects. They can consequently

investigate phenomena such as the developmental process of word learning, or effects

of word frequency in the input data.

Category acquisition has also been modeled on a large scale from natural language

input. Fountain and Lapata (2011) formalize large-scale category acquisition as an in-

cremental graph clustering problem. They propose an incremental graph-based model

of the acquisition of categories comprising more than 500 concepts from both large-

scale corpora of generic text as well as child-directed language data (Fountain, 2013).

The graph-based model treats the acquisition of concept representations and the clus-

tering of concepts into categories as two separate processes. While our own work

leverages a similar representation of the input to the category learner, we formalize

the acquisition of categories and their representations as a single process, and within

the Bayesian framework. Comparison of our own model with the graph-based model

discussed above (Chapter 4) reveals that our Bayesian model qualitatively and quanti-

tatively fits the human category learning process more closely.

In sum, we leverage the support from prior theoretical analyses and computational

studies for the fact that natural language input provides a rich environment for both

word learning and category acquisition. Using natural language corpora allows us to
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Model Stimuli Categories

Medin and Schaffer (1978) 6 binary strings (e.g., 10101, 01000, ...) 2

Anderson (1991) 16 binary strings (e.g., 0111, 1011, ...) 2

Lee and Navarro (2002) 9 colored shapes (e.g., �, �, N, ...) 2

Bornstein and Mash (2010) 16 physical objects (e.g., , , ...) 2

This work > 300 concepts (e.g., hat, dog, car, ...) > 40

Figure 2.2: Illustration of stimuli used in selected laboratory studies of human category

learning, and the number of stimuli and target categories to be learnt. The bottom line

provides our own test set dimensions for comparison.

evaluate our models in a broader setting. Figure 2.1 compares the test set size of pre-

vious models of word learning from multimodal input (Figure 2.1a–2.1b) with the test

set used in our own studies (Figure 2.1c). We advance previous research by inves-

tigating a range of categorization-related phenomena, such as the joint emergence of

categories and their features or the dynamic nature of featural representations. All our

models are formulated within the Bayesian framework which allows us to express the

involved variables and their dependencies in an explicit and mathematically principled

manner. We motivate the use of Bayesian methods and related learning paradigms for

computational cognitive modeling in the beginning of Chapter 3.

Modeling Human Behavior in the Laboratory Although the process of category

and language learning “in the wild” interacts with a myriad of signals from the envi-

ronment and joint development of other abilities, such as social or sensorimotor skills,

much experimental research investigated this process in a laboratory setting. Labora-

tory studies isolate one phenomenon of interest from as many confounding factors as

possible. This creates an ‘ideal’ data set in the sense that it is free from any confound-

ing factors or idiosyncratic properties of naturalistic data sets. In a typical experiment,

participants are taught the category membership, or word meaning, of a set of training

stimuli and then asked to generalize to a set of test stimuli. A series of computational

models have been developed with the goal to predict the behavioral patterns emerging

from laboratory experiments.

Xu and Tenenbaum (2007) pioneered Bayesian modeling of taxonomic word meaning

acquisition. In particular, they investigate child and adult patterns of word acquisi-

tion for concepts on varying levels of the taxonomic category hierarchy (i.e., subordi-
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nate (dalmatian), basic (dog), superordinate (animal)). They show experimentally that

humans leverage the statistical structure in the set of (isolated and uncontextualized)

examples of word-referent co-occurrences to determine the taxonomic level of a refer-

ent of a new word. Their Bayesian model, which incorporates a formalization of this

tendency as prior knowledge, replicates a variety of related behavioral phenomena.

A variety of studies of category acquisition in the laboratory and models thereof exist.

Anderson’s rational model of categorization (Anderson, 1991), for example, was de-

veloped to replicate the process with which humans learn categories of abstract stimuli

represented by binary features (as illustrated in Figure 2.2) in the laboratory (see also

Sanborn et al. (2006)). The model incrementally learns a categorization over those

stimuli by integrating new observations into already established categories based on

featural similarity. Our model of incremental category learning (Chapter 4) is concep-

tually similar to the models discussed above, but explores their applicability to a larger

number of natural concepts and categories, represented with more complex featural

representations.

While laboratory studies allow to observe phenomena of interest free from unwanted

confounding factors they also have a range of limitations. Given the temporal re-

strictions of the experiment, and thus the learning environment that can be simu-

lated, the complexity of training and test scenarios is limited. Stimuli tend to have

a small number of manually specified features, and either are concrete objects (e.g.,

physical objects (Bornstein and Mash, 2010)) or abstract (e.g, binary strings, colored

shapes (Medin and Schaffer, 1978; Kruschke, 1993; Lee and Navarro, 2002)). Fig-

ure 2.2 illustrates the kind and number of stimuli and categories involved in selected

prior laboratory studies of human category learning. The low problem complexity

comes with the advantage that it typically allows for exact inference in computational

models, avoiding the interference of approximate learning mechanisms. However, it is

not clear to what extent the results transfer to more realistic learning problems involv-

ing complex concepts and situations. The true environment from which children learn

is messy: a multitude of objects, and potential referents are around, and the obser-

vational input might be noisy, e.g., visually constrained or highly untypical. Further-

more, in laboratory category learning studies it is difficult to control for the influence

of prior knowledge of the participants. Most studies involve adult participants who are

equipped with rich knowledge about categorization principles; and even children bring

in experience from their interaction with the real world (Neisser, 1987).
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In this thesis we develop cognitively motivated Bayesian models of the incremental

process of category and feature learning, similar in spirit to Anderson’s rational model

of categorization, and we apply them to large-scale cognitive learning problems. We

show that incremental Bayesian models of category learning explain a range of cate-

gory acquisition-related phenomena when applied at scale – both in terms of the quan-

tity of available input, its complexity, and the size of our evaluation set.

2.2.2 Learning as an Incremental Process

In the previous sections we reviewed the what of computational models of word and

category acquisition: the set of phenomena they aim to model and the scope and com-

plexity of the input data. Now, we turn to the how, the mechanisms and assumptions, of

the learning process.4 There are two prevalent paradigms of (unsupervised) learning:

The batch paradigm where a learner is presented with a set of training data and system-

atically extracts information from it, typically holding the data in memory being able

to access any data point at any time. The learnt knowledge can be employed after the

learning phase is completed. If new data become available, the training phase needs to

be re-run from scratch. The incremental learning paradigm on the other hand assumes

that a learner observes data on-line, over time and integrates extracted information into

its state of knowledge immediately. Excessive memory use is not necessary at the

cost of always learning from an incomplete data set (due to the ignorance about future

observations).

The majority of machine learning algorithms adopt the batch learning paradigm, ex-

ploiting the availability of excessive memory and processing power. Experimental

evidence suggests, however, that (a) human memory is limited and not every observa-

tion is stored in memory; and that (b) humans are able to make immediate use of newly

encountered information.

Bornstein and Mash (2010) examine object category acquisition (toy objects of two

categories differing in color and configuration of their parts) in 5-month old infants.

Infants were familiarized with one of the categories in two conditions: one group was

exposed to objects of a category for two months in their homes prior to a categoriza-

tion test, while the second group was exposed to the objects on the day of the test for

4These two perspectives roughly correspond to Marr’s computational and algorithmic levels of anal-
ysis (Marr, 1982).
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the first time. During the test, both groups went through a familiarization phase with

one category of toys (the same category the home-experience group was already fa-

miliar with). Following this, infants were tested with two previously unseen objects,

one from the familiar category, and one from the unfamiliar one. Results revealed that

infants without prior exposure at home showed signals of learning during the famil-

iarization phase in terms of a change in looking behavior. Their performance in the

following categorization task further revealed that they had acquired the category dur-

ing the familiarization phase. This suggests that their category representations must

have formed on-line during the short familiarization phase of just a few minutes. In-

fants do not require a separate, extended training period in order to be able to make use

of inferred category knowledge.5

Diaz and Ross (2006) investigate incremental category learning in adults. They show

that adults incrementally improve their featural representations of categories, which in

turn leads to a better ability to assign objects to categories. Participants immediately

use the acquired knowledge throughout the learning process such that their category

representations and categorization performance improves over time.

Although the majority of cognitive models of category and word learning rely on tra-

ditional batch machine learning techniques,6 the incremental nature of human learn-

ing has been incorporated into models as well. Anderson’s rational model of anal-

ysis formalizes the incremental categorization process as a non-parametric Bayesian

model (Anderson, 1991). The model predicts category membership of observed stim-

uli based on featural similarity to already established categories. Stimuli are catego-

rized on-line, as they are observed, and once made the categorization decision cannot

be revised. Observations are either assigned to an existing category based on feature

overlap, or initiate a new category.

While Anderson’s incremental learning algorithm involved local approximations, San-

born et al. (2006) derive an asymptotically exact sequential Monte Carlo algorithm

for the same model, in form of a particle filter (Doucet et al., 2001). Without delv-

5This is not to say that a prior and extended familiarization phase had no effect: Children who were
familiarized with one category in their homes for two months expressed familiarity with the known cat-
egory from the start of the familiarization phase in the laboratory, and did not show signals of learning.

6An important argument in favor of using batch algorithms in cognitive modeling is their represen-
tation of an ‘ideal learner’. This decision allows the modeler to investigate the learning process under
the assumption that the learner has perfect access to and makes perfect inferences based on all available
data. Consequently, results can abstract away from inaccuracies in the learning process introduced by
temporal or memory limitations of the learner.
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ing into the technical details (cf., Section 3.3 for this), particle filters incrementally

approximate a target distribution by updating a set of samples from this distribution

(‘particles’) in an on-line fashion with information from new data points, as they be-

come available. Memory constraints can, for example, be modeled by restricting the

number of available samples. Particle filters have become a popular learning mecha-

nism for Bayesian cognitive models in recent years and, beyond categorization, have

been used to model phenomena like incremental parsing (Levy et al., 2009) or word

segmentation (Börschinger and Johnson, 2011, 2012). We develop particle filters to

study large-scale human category and feature learning in Chapters 4 and 5.

Beyond modeling human learning in laboratory settings, longitudinal corpora of child-

directed speech provide an excellent data source for modeling the long-term incremen-

tal process of word learning (Baroni et al., 2007; Fazly et al., 2010) and category acqui-

sition. A graph-based model for incremental category learning from natural language

data has been put forward by Fountain and Lapata (2011). The model sequentially

observes linguistic stimuli, and constructs meaning representations of concepts from

word co-occurrence statistics in the input data. From this representation they infer a

categorization of concepts using an incremental graph-clustering algorithm (Biemann,

2006). They incrementally construct a graph where nodes correspond to concepts,

and their connection strength is determined by distributional similarity of the linguis-

tic contexts the concepts appear in. Nodes of the graph are clustered into categories

based on their connection strength. Constructing semantic concept representations

(through co-occurrence statistics) and inducing a categorization of concepts (through

graph clustering) are treated as two separate processes. We show that our incremen-

tal Bayesian model, while formalizing the process in a unified, and hence cognitively

more plausible, process, fits human category learning more closely than the model

described above.

2.3 Summary

Learning to represent and to communicate about the rich structure of the environment

surrounding us is a fundamental challenge for young infants. In the first part of this

chapter we reviewed experimental evidence suggesting that the two tasks of learning

language, and learning conceptual knowledge in the form of categories are intertwined

and mutually help each other. Building on these findings, in this thesis we model
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category acquisition from linguistic input.

The second part of this chapter reviewed computational models of word- and category

learning. We found that these models are evaluated in limited test settings, comprising

the acquisition of a small lexicon or a small number of categories from often artificial

stimuli, either due to a sophisticated multimodal representation of the learning environ-

ment which is difficult to obtain on a large scale (see Figure 2.1), or due to laboratory

experimental settings which are inherently limited in the complexity of the learning

task participants are confronted with (see Figure 2.2). In this work we use corpora of

natural language to train and test or models on a broader set of categories and features

than done previously. The work presented in this thesis is most closely related to the

rational models of categorization (Anderson, 1991; Sanborn et al., 2006), and natural

language categorization models (Fountain and Lapata, 2011) introduced above. We

will discuss these approaches and their relation to our work in Chapter 4 in the context

of our own category acquisition experiments.

We now move from the discussion of behavioral experiments and their treatment in

computational models, to a technical discussion of the modeling decisions underlying

the work in this thesis, and their mathematical foundations. Chapter 3 motivates the use

of Bayesian statistics for computational cognitive modeling, and technically introduces

its mathematical foundations and algorithms for approximate inference.



Chapter 3

Bayesian Cognitive Modeling and

Approximate Inference

This chapter introduces Bayesian modeling, the mathematical framework underlying

the models developed throughout this thesis. We begin by motivating Bayesian mod-

eling for cognitive phenomena (Section 3.1), before we move on to a more technical

introduction (Section 3.2) and the description of sampling methods for approximate

inference (Section 3.3).

3.1 Cognition as Bayesian Inference

Inference is the process of deriving meaningful conclusions from given (possibly un-

certain) knowledge. Much of human cognition can be formalized as inductive infer-

ence, i.e., generalizing from knowns to unknowns, under uncertainty. Humans use

established knowledge in order to make inferences about the world, for example when

they make decisions (Vul et al., 2014), predictions about everyday phenomena (Grif-

fiths and Tenenbaum, 2006) or learn words (Xu and Tenenbaum, 2007). Categorization

is no exception: When learning about a new category, humans need to infer the struc-

ture of the category from examples of its members. The knowledge acquired through

this process can be ultimately used to make decisions about how to categorize new

stimuli. Anderson (1991) pioneered this formalization of the categorization process as

inductive inference.

The category inference process described above depends on both established (or prior)

29
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knowledge and on observations of stimuli. If observations are scarce or poor in quality,

inferences can be based more strongly on prior knowledge. If the prior knowledge is

weak or uncertain, the empirical information from the observed data can drive the

inferences.

Bayesian statistics mathematically formalize inductive inference. Using the rules of

probability, it defines a principled way of drawing conclusions from given informa-

tion, and provides a means of reasoning about confidence.1 It assumes that all quanti-

ties which are reasoned about are mathematically modeled by random variables. Our

goal is to learn the joint probability distribution over all random variables involved.

In order to compute this target it is necessary to define a prior distribution (encoding

existing knowledge) and a likelihood (comprising information obtained from observed

data). Any inference about the quantities of interest then involves combining the prior

knowledge with the likelihood into the posterior distribution (encoding our updated

knowledge with information from the observed data). Bayes rule formalizes this pro-

cess and in its intuitive formulation corresponds to,

posterior ∝ prior× likelihood. (3.1)

The prior, posterior and likelihood are all represented stochastically as (conditional)

probability distributions. Slightly more formally, Bayesian inference involves comput-

ing conditional probabilities of quantities we want to predict conditioned on quantities

that have been observed. We derive Bayes’ rule formally in the next section.

The Bayesian inference paradigm has been shown to accurately describe a wide variety

of cognitive phenomena (Chater et al., 2010). While few proponents of the Bayesian

framework would argue that human cognition actually involves manipulating proba-

bility distributions in the brain, the Bayesian paradigm is a useful descriptive model

of human behavior (corresponding to Marr (1982)’s computational level of analysis).

An arguably fundamental point of divergence of Bayesian inference from human cog-

nition is the fact that Bayesian inference is optimal : a learner using Bayes rule (3.1)

to update knowledge will always draw the best possible conclusion from the avail-

able data (Jaynes, 2003). However, human behavior is often suboptimal, intuitive and

impulsive (Griffiths and Tenenbaum, 2006; Goodman et al., 2008).
1Other cognitive modeling paradigms include associative (or connectionist) methods and symbolic

architectures. The former paradigm represents knowledge purely in terms of strength of associations
and is fraught with difficulties when inferring structured knowledge, while the latter is not amenable
to graded, probabilistic representation. See for example Tenenbaum et al. (2011) for a more detailed
comparison.
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Optimal Bayesian inference by exact evaluation of Bayes rule is, however, mathemati-

cally complex and computationally expensive. Although equation (3.1) may appear

straightforward, the involved probability distributions are often complex and high-

dimensional, and the computation of the updates of the prior- to the posterior dis-

tribution quickly becomes intractable (Sections 3.2 and 3.3 technically discuss this

point). Furthermore, exact Bayesian inference conflicts with human behavior: humans

are limited by memory and attention constraints while being able to make inferences

within split seconds. Exact Bayesian inference can take hours or days on powerful

computers, and often requires vast amounts of memory. Finally, it always leads to

the same optimal response under identical conditions, while human behavior exhibits

variation (Griffiths and Tenenbaum, 2006; Vul and Pashler, 2008).

A variety of approximate inference algorithms have been developed over the past

decades which (a) enable tractable Bayesian inference, and (b) better describe human

behavior. In this thesis we use sampling-based approximate inference methods, which

represent probability distributions as a limited set of realizations of random variables

(a sample), with the frequency of realized variable values corresponding to the value’s

probability under the distribution (cf., Section 3.3).

Various properties make sampling-based approximate inference methods amenable as

descriptions of the human inference mechanism. Firstly, they are general methods, in

the sense that they can be used to approximate any measures relating to complex func-

tions, and are in no way tied to specific (cognitive) phenomena. Secondly, sampling-

based methods can approximate functions of arbitrary complexity which makes them

ideal candidates for approximating high-dimensional probability distributions as aris-

ing for use in the large-scale models of cognition developed in this thesis. Finally,

by varying the size of the sample, sampling-based methods provide an explicit way to

approximate the memory-accuracy tradeoff: how many samples are necessary to make

inferences with a quality matching human behavior? We investigate this question in

the context of large-scale incremental category acquisition in Sections 4.5 and 5.4.

In a machine-learning context it is not uncommon to approximate functions using hun-

dreds or thousands of samples. This seems unrealistic in the face of human processing.

Indeed, recent results have shown that in the context of cognitive decision tasks a

small set of possibly even a single sample can lead to high-quality predictions (Vul

et al., 2014). Results presented in Goodman et al. (2008) for rule-based categorization

tasks suggest that individual participants maintain a small sample of rules, leading to
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individually suboptimal behavior (the aggregate behavior of groups, averaging over in-

dividual samples results, however, in optimal responses). Sampling is usually viewed

as a useful description of the algorithmic process underlying human inference (Marr,

1982), rather than assuming that humans physically maintain and manipulate samples

of probability distributions in the brain (but see Huang and Rao (2014) for a neural

implementation of an incremental sampling algorithm).

The remainder of this chapter provides the mathematical foundation underlying Bayesian

statistics and approximate inference. First, we introduce Bayes’ rule from a mathe-

matical perspective, and discuss its use within generative models. Next, we introduce

sampling-based methods for approximate Bayesian inference (Section 3.3). We dis-

cuss Monte Carlo sampling in general (Section 3.3.1), and two specific instantiations:

a Gibbs sampler (Section 3.3.2) and a particle filter (Section 3.3.3).

3.2 Bayesian Statistics

Bayesian statistics provides a principled way for reasoning under uncertainty by treat-

ing both model parameters and observed data as random variables.2 This allows to

learn distributions over model parameters, which in turn allows to reason about con-

fidence in a particular set of parameters. Probabilities are interpreted as degrees of

belief. The ability to reason about uncertainty, or about the degree of belief in a par-

ticular model parameterization (often referred to as hypothesis in Bayesian modeling

terminology), is the fundamental characteristic of Bayesian statistics. Bayesian statis-

tics models the full distribution over parameters. This is in contrast to maximum like-

lihood estimation which aims to estimate a single best hypothesis, i.e., a point estimate

of this distribution. Using the full distribution allows to assess the degree of belief in a

particular parameter setting. A point estimate would place 100% of our confidence on

one particular parameterization which easily leads to overconfident predictions.

As discussed in the beginning of this chapter, Bayes rule tells us how to combine prior

belief with empirically observed evidence (likelihood) into posterior belief,

posterior ∝ prior× likelihood.

2This stands in contrast to the second major statistical paradigm, frequentist statistics. Frequentist
statistics treats observed data as random variables, and model parameters as fixed quantities.
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More formally, the prior belief encodes the probability of a particular set of parame-

ters (or a hypothesis) θ, before observing any data (p(θ)). The likelihood encodes the

probability of the observed data y given this hypothesis p(y|θ) , i.e., how likely is it

to observe data y given that hypothesis θ is true? The posterior belief p(θ|y) corre-

sponds to the probability of a hypothesis given both its prior probability, as well as the

likelihood. Updates of the prior beliefs with data-derived likelihoods can be applied

repeatedly: the updated, posterior belief serves as the new prior for further reasoning.

Bayes’ rule is a direct formalization of this process of probability updates:

p(θ|y) = p(y|θ)p(θ)
p(y)

(3.2)

Although this relation is maybe not immediately intuitive, it can be straightforwardly

derived from fundamental principles of probability:

p(θ|y) = p(y,θ)
p(y)

(by definition of conditional probability) (3.3)

=
p(y|θ)p(θ)

p(y)
(by the chain rule) (3.4)

=
p(y|θ)p(θ)∫

θ
p(y|θ)p(θ)dθ

(3.5)

Often we are interested in the relative probability of different hypotheses θ. Since the

denominator does not depend on any particular value of θ it can dropped,

π(θ|y) ∝ p(y|θ)p(θ). (3.6)

Alternatively, one is often interested in estimating a distribution over parameters θ

based on a training set y and use it to make inferences about unseen data ỹ. Given

that the parameters θ are random variables in our model we do not know their real

value, so we have to average (or integrate) over all possible values. This leads to the

posterior predictive distribution (see Gelman et al. (2014) for an accessible discussion

of predictive evaluation methods for Bayesian models),

p(ỹ|y) =
∫

θ

p(ỹ|θ)p(θ|y)dθ. (3.7)

The posterior predictive distribution represents the probability of unseen data ỹ given

a hypothesis, weighted by the posterior probability of that hypothesis given the train-

ing data y, averaged over all possible hypotheses. Intuitively, rather than attempting

to predict the future based on a single hypothesis, predictions are made based on all

possible hypotheses, weighted by their probability. This form of reasoning is one of

the main benefits of the Bayesian approach.
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3.2.1 Bayesian Generative Modeling

Bayesian modeling uses the statistical framework introduced above to fit models to

data: given empirical data we want to learn models that explain the data well. Hy-

potheses correspond to statistical models (or parameterizations thereof) which we can

compare and evaluate and our goal is to learn a distribution over models.

Statistical models are systems of probability distributions over sets of random vari-

ables. In Bayesian statistical modeling these variables are:

• Observed variables, or empirical data y,

• Hidden variables θ which conflate all non-observable variables in the model.

These include (a) latent variables z, which are hidden factors used to explain the

structure underlying the observed data; and (b) a vector of parameters φ, which

govern the characteristics of the involved distributions.

The models in this thesis are designed to learn categories from stimuli. Each stimulus

consists of a set of words (observed variables). Our models define processes that induce

a category structure among the stimuli, by assigning each stimulus a category label

(latent variable). Sections 3.2.2 and 3.2.3 discuss distributions we use for modeling

the observed and latent variables.

Generative Bayesian models learn a joint probability distribution over observed and

hidden variables p(y,θ). This allows to both infer parameters θ from observations y,

but also to inverse the process and, assuming θ is known, generate data y from the

model. This generating process is often useful to illustrate the model structure even

though practically the model will be used for inference, i.e., learning the parameters

given the data.

Taking the Bayesian approach we formulate our models in terms of prior probabilities

and likelihoods: we want to learn models that explain the observed data well but we

also want to factor in prior knowledge and intuitions we might have about the prob-

lems we are tackling. From a modeling perspective, prior knowledge can help to (a)

restrict the search space of good hypotheses by directing the model to an a priori likely

subspace; and (b) avoid overfitting, i.e., learning parameters which fit the training data

too closely, and will generalize poorly towards unseen data.
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3.2.2 The Dirichlet-Multinomial Model

In the models developed in this thesis, both observed variables (in our case stimuli

consisting of words) and latent variables (such as category labels) are discrete. We

model observations of discrete variables x as draws from the Multinomial distribu-

tion Mult(φ) (where x may refer to either observed or latent variables).3 Taking the

Bayesian approach we draw the parameters φ themselves from a prior distribution. We

will use the Dirichlet distribution as the prior distribution over Multinomial parameters

which itself takes a parameter α (we explain our choice of prior in Section 3.2.2.1). We

can summarize our model structure as,

x∼Multinomial(φ)

φ∼ Dirichlet(α),
(3.8)

where∼ denotes that the variable on the left is distributed according to the distribution

on the right. We now mathematically justify our choice of distributions.

3.2.2.1 Priors and Conjugacy

The fundamental operation in Bayesian inference consists of updating a prior distribu-

tion with a likelihood function to form a posterior distribution. Combining arbitrary

distributions results in posterior distributions of unknown form which can be difficult

to evaluate or sample from. There is a class of well-known priors which, when com-

bined with a likelihood distribution, result in a posterior distribution which belongs to

the same class as the prior distribution. A prior with this property is called conjugate

prior to the respective likelihood distribution.

The Dirichlet distribution is the conjugate prior of the Multinomial distribution. To see

this, consider the definition of the Multinomial distribution over a set of c observations

x each of which takes a value k = 1...K under the parameters φ,

p(x|φ,c) = c!
∏k nk! ∏

k
φ

nk
k Multinomial(φ1 ...φK,c), (3.9)

where nk is the number of observations in x that take the value k.

3It is common in Natural Language Processing to conflate the Categorical and the Multinomial
distribution (which generalizes the Categorical distribution to sets of draws) distribution. We will follow
the convention of prior work here, and use the term Multinomial throughout even when referring to
Categorical distributions, unless otherwise specified.
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The Dirichlet distribution is a ‘distribution over distributions’, i.e., over all possible

parameterizations of a K-dimensional Multinomial. A K-dimensional Dirichlet dis-

tribution is parameterized through K concentration parameters α1...αk. It is common

to set all parameters to the same value, the concentration parameter α = α1 = ...αk.

This results in an uninformative prior, reflecting a priori ignorance about the relative

importance of the K outcomes. However, the value of α will support parameterizations

of different forms: a small value of α << 1 results in Multinomial parameters concen-

trated on a few outcomes (i.e., a ‘peaky’ distribution), whereas larger values result in

closer to uniform distributions. The probability density function (PDF) of the Dirichlet

distribution is:

p(φ|α) =
Γ
(

∑k αk
)

∏k Γ
(
αk
)∏

k
φ

αk−1
k Dirichlet(α1 ... αK), (3.10)

where Γ(·) is the Gamma function, a generalization of the factorial to real numbers.

Combining the Multinomial distribution from equation (3.9) with the Dirichlet dis-

tribution from equation (3.10) leads to another Dirichlet distribution, with updated

parameters,

p(φ|x;α) = p(x|φ)p(φ|α)

=
Γ(∑k nk +αk)

∏k Γ(nk +αk)
×
[
∏

k
φ

nk
k

][
∏

k
φ

αk−1
k

]
=

Γ(∑k nk +αk)

∏k Γ(nk +αk)
×∏

k
φ

nk+αk−1
k Dirichlet(n1 +α1 ... nK +αK),

(3.11)

where the first term in lines 2 and 3 is a normalizing constant.

Note from equation (3.11) that the Dirichlet parameters (αk) can be interpreted as

hypothetical “pseudo-counts” which are added to observations from the data (nk) and

can be interpreted as “imaginary”, derived from prior knowledge. The Dirichlet prior

thus has a smoothing effect on the data-derived parameters and can help avoid model

overfitting.

3.2.2.2 Predicting Observations

We have derived the form of the posterior distribution over Multinomial parameters

φ under the Dirichlet prior. Often, rather than the distribution over φ itself, we are

interested in the conditional distribution over values of a new observation xt+1 (e.g., the

distribution over category labels for an unseen stimulus) given the distribution over
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over all possible parameters φ. The conditional distribution over values for xt+1 given

all other observations x can be computed by averaging (or integrating) over all possible

values of φ. Due to the mathematical advantages implied by conjugate prior-likelihood

pairs, this integral can be solved analytically. After some algebraic manipulation the

conditional distribution evaluates to a very simple form,

p(xt+1 = k|x,α) =
∫

Multinomial(xt+1 = k|φ) Dirichlet(φ|x,α) dφ

=
∫

φk
Γ(∑k nk +αk)

∏k Γ(nk +αk)
∏

k
φ

nk+αk−1
k dφ

=
nk +α

∑k′ nk′+α
.

(3.12)

For the interested reader, we derive this result in Appendix A. The probability of obser-

vation xt+1 taking value k equals the number of times value k was assigned to any other

observation in x, normalized by the counts of assignments of any value k′ in x. This re-

sult allows the derivation of efficient learning algorithms as discussed in Sections 3.3.2

and 3.3.3.

3.2.3 Intrinsic Gaussian Markov Random Fields

While Dirichlet priors are intuitive and computationally advantageous when combined

with Multinomial likelihood distributions, the kinds of prior intuitions they can encode

are limited. One important limitation is the fact that Dirichlet priors cannot capture de-

pendencies between parameter values. There are however classes of problems which

naturally exhibit such structure, for example spatial or temporal variation of a phe-

nomenon of interest. Consider a model for the spread of an epidemic: the severity

of infection in any area at any time depends on the level of infection at the area’s

geographically neighboring areas (due to their proximity and interaction between in-

habitants), as well as the level of infection in the area at the previous time (due to

epidemics spreading smoothly and continuously). This structure should be captured

by a good model.

Chapter 6 of this thesis is concerned with a problem of similar structure, namely mod-

eling of change of meaning over time: we model meaning change as a gradual process

which goes hand-in-hand with social, economic and generational change in the popu-

lation of language users. Like discussed in Section 3.2.2, we still assume multinomial

likelihoods. However, we use a different family of priors over these distributions which
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allow us to capture gradual, or smooth, parameter changes. In particular, we use in-

trinsic Gaussian Markov Random Fields (Rue and Held, 2005; Mimno et al., 2008):

x∼Multinomial(φ)

φ∼ iGMRF(κ,Q ).
(3.13)

We first define Gaussian Markov Random Fields (GMRFs). Afterwards, we introduce

their intrinsic version (iGMRFs), as well as properties which make them suitable for

capturing smooth parameter dependencies in priors in Bayesian models. Our descrip-

tion is based on various introductions and tutorials on (intrinsic) GMRFs, most notably

Rue and Held (2005), Paciorek (2009) and Vivalt (2014). We focus on structures di-

rectly relevant to modeling temporal development. However, GMRFs can model a

wide variety of structured dependencies between parameters. For a thorough introduc-

tion please refer to one of the above references.

GMRFs are undirected graphical models over relations between variables. They are

represented by a graph G = (E,V ) consisting of a set of nodes V representing vari-

ables, and edges E between pairs of nodes, which indicate a dependency relation. Mul-

tivariate normal distributions (MVN) define distributions over n-dimensional random

vectors φ = [φ1...φn]. They are parameterized through a n-dimensional mean vector µ,

and a n×n co-variance matrix which encodes dependencies between variables φi,

φ∼N (µ,Σ). (3.14)

MVNs can be represented graphically through a graph G as described above: each ran-

dom variable φi corresponds to a node in the graph, and edges represent dependencies

between φi. The inverse of Σ is the precision matrix Q = Σ−1 which explicitly captures

the dependency structure between variables φi, and consequently the graph structure

of G . Formally, a random vector φ = [φ1...φn] is a GMRF if it follows the distribution

p(φ) = (2π)−n/2|Q|1/2exp
(
− 1

2
φ

T Qφ
)
, (3.15)

by definition of the MVN, and assuming that the mean µ = 0. It is also a GMRF with

respect to the graph G if there is a non-zero entry in Qi j if and only if there exists an

edge between nodes i and j in G ,

Qi j 6= 0 ⇔ {i, j} ∈ G ∀i 6= j. (3.16)
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(a) Graph-representation G of a first-order GMRF on the line.

φ1 φi−1 φi φi+1 φI

(b) The corresponding Precision matrix Q = κR (with κ = 1).

1 -1 0 0 0 ... 0

-1 2 -1 0 0 ... 0

0 -1 2 -1 0 ... 0

... ... ... ... ... ... 0

0 0 0 -1 2 -1 0

0 0 0 0 -1 2 -1

0 0 0 0 0 -1 1

Figure 3.1: A first-order GMRF on the line with corresponding precision matrix.

For many problems the dependencies between variables are sparse, such that Q has

many zero entries, and G is sparsely connected, which allows for efficient computa-

tions. Figure 3.1 displays a graph G (3.1a) and precision matrix Q (3.1b) representing

a structure corresponding to first-order parameter dependencies on the line. Without

worrying too much about the values in Q (for now), we can see that that only ele-

ments Qi j such that j− i <= 1, i.e., immediate neighbors, contain non-zero values,

mirroring the graphical dependencies in G . This structure is reminiscent of temporal

dependency structure, i.e., each variable in time is connected to (i.e., depends on) its

immediate neighbors, and is indeed the structure adopted by the models in this thesis.

The intrinsic Gaussian Markov Random Field (iGMRF) is an improper version of

the GMRF. Mathematically, this means that the prior is not normalizable (the nor-

malizing constant evaluates to infinity), i.e., it is not a proper probability distribu-

tion. While this sounds intuitively unappealing4 these models have desirable prop-

erties which make it a common prior in hierarchical Bayesian models. We discuss the

iGMRF of first-order dependencies on the line as shown in Figure 3.1.

The iGMRF of first-order dependencies on the line is defined in terms of independent,

4The impropriety of the iGMRF has a lot of theoretical consequences which we will not discuss
here, but have been discussed extensively, e.g., in Rue and Held (2005). Most importantly, the iGMRF
is usually proper (i.e., normalizable) on a subregion of its probability space, and the posterior distribution
arising from combining the iGMRF prior with the likelihood function is also typically proper.
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normally distributed, increments between connected variables,

∆φi ∼ N (0,κ−1) i = 1...n−1, (3.17)

with ∆φi = φi+1−φi. We write the variance in terms of the inverse precision κ−1 (just

like we used the precision matrix Q instead of the variance-covariance matrix Σ above).

The density over φ can then be derived, in analogy to (3.14),

p(φ|κ) ∝ κ
(n−1)/2exp

(
− κ

2

n−1

∑
i=1

(∆φi)
2)

= κ
(n−1)/2exp

(
− κ

2

n−1

∑
i=1

(φi+1−φi)
2)

= κ
(n−1)/2exp

(
φ

T Qφ
)
,

(3.18)

with an appropriately defined scaled precision matrix Q = κR (with R being a matrix

capturing the dependencies among the random variables) which turns out to be defined

as shown in Figure 3.1b, with

Qi j = κ


ni if i = j

−1 if i∼ j

0 otherwise.

(3.19)

Here, ni refers to the total number of nodes connected to node i, and i ∼ j indicates

that nodes i and j are connected.

Why is this particular model structure convenient? Conceptually, in priors of Bayesian

models which capture the development of some measure over time (or space), it is

desirable to be able to only model the development itself without the need to make any

claim on the concrete values the measure takes at any time. Often this development is

measured as a smooth process over time (or space). Since the iGMRF models the local

differences in parameter values (between any individual pair of connected variables)

but not the values of those variables, we can achieve exactly this.5

5This property is mathematically enabled by the impropriety of the iGMRF. The precision matrix Q
is not full-rank, which means that there exists at least one vector y 6= 0 such that Qy = 0. For the matrix
in 3.1b exactly one such vector exists (Q has nullity k = 1), namely the vector y = 1, because all rows
in Q sum to zero: ∑ j Qi j = 0 ∀i. Conceptually, these vectors correspond to directions that the iGMRF
“has nothing to say about”. Mathematically it means that iGMRFs with nullity k are invariant to the
addition of a polynomial of degree < k. An iGMRF with k = 1 is consequently invariant to the addition
of polynomials of degree 0, i.e., constants. The degree of a polynomial is the maximum of all exponents
of its variables. A polynomial without variables is a constant and necessarily has degree zero. And
practically, for the iGMRF on the line with first-order dependencies (Figure 3.1) it means that no global
mean of the parameter values exists – the iGMRF has nothing to say about their values, only about their
relative difference.
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The full conditional distributions of the iGMRF illustrate the model’s invariance to the

addition of a constant to the global mean,6

φi|φ(−i),κ∼N
(1

2
(φi−1 +φi+1),

1
2κ

)
1 < i < n, (3.20)

where φ(−i) denotes the vector φ except element φi. The value of any variable φi is

normally distributed around the weighted average of the values of its neighboring pa-

rameters. The allowed flexibility between values between connected variables (i.e., the

“tightness” of the normal distribution) is regulated through the precision parameter κ.

3.3 Bayesian Inference

So far, we have introduced the framework of Bayesian statistical modeling, and dis-

cussed the types of distributions which are commonly used as priors or likelihood func-

tions in Bayesian models, and play a central role in the models presented throughout

this thesis. While we demonstrated characteristics and limitations of these distribu-

tions we did not yet discuss how their parameters can be estimated from data. We now

introduce algorithms for Bayesian parameter estimation.

Given a data set y and a model specified in terms of a set of parameters θ, the goal

of Bayesian inference is to estimate a distribution over values for θ given the data y.

Bayesian inference estimates the full posterior distribution over all possible parame-

ter values (rather than the best value) and consequently captures uncertainty about a

particular set of values.

Bayes’ rule provides a mathematical definition for how to compute this quantity,

p(θ|y) = p(y|θ)p(θ)∫
θ

p(y|θ)p(θ)
. (3.21)

Practically, however, for all but trivial models exact computations of these quantities

is infeasible because the integrals involved become increasingly difficult to compute

with a growing parameter space.

Below, we introduce Monte Carlo sampling which provides a way to work with com-

plex probability distributions indirectly, by representing them through a set of sam-

ples. Sophisticated versions of Monte Carlo methods have been developed which allow

6With ‘global mean’ we refer to some value µ such that µ = Eφ1 = Eφ2 = ....
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working with unnormalized distributions,

π(θ|y) ∝ p(y|θ)p(θ), (3.22)

avoiding the need to compute the integrals involved in the normalizing constant in (3.21).

We will provide a brief introduction into approximation through Monte Carlo integra-

tion. We then present two instantiations of Monte-Carlo samplers which we will use

for parameter inference for our models throughout the thesis:

• A Gibbs sampler, which is a batch inference algorithm that produces parameter

samples through repeated iterations over the data, repeatedly updating its param-

eters according to the unnormalized π(θ|y).

• A Particle filter, which is an incremental inference algorithm and sweeps over

the training data only once. It propagates a set of samples (called particles)

and immediately updates each sample independently with information extracted

from newly encountered data points.

Gibbs samplers are popular inference algorithms which are frequently used for approx-

imating high-dimensional posterior distributions arising in Bayesian models like those

discussed in this thesis. The batch procedure underlying the Gibbs sampler, however,

seems at odds with characteristics of human learning: humans have memory limita-

tions – they do not memorize large sets of data and perform systematic inference on

them. Instead, they use the information of individual observations to make inferences

immediately or to update their knowledge (Bornstein and Mash, 2010; Diaz and Ross,

2006). The particle filter resembles this procedure more closely. Chapters 4 and 5 will

compare the category acquisition process emerging from our models under the batch

Gibbs sampler and the incremental particle filter.

3.3.1 The Monte Carlo Method

The Monte Carlo (MC) method (Hammersley and Handscomb, 1964; MacKay, 2002,

Ch., 29) provides a way of approximating complex functions (such as probability dis-

tributions) which are impossible or infeasible to evaluate directly. Functions of interest

are approximated by simulation: a set of samples from the distribution is simulated,

and all further computations are carried out on the sample. This works because the

expected value of any function, irrespective of its complexity, can be approximated
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arbitrarily accurately through the mean of independent and identically distributed (iid)

samples from the function,

E f (θ) =
∫

p(θ) f (θ)dθ (3.23)

≈ 1
N

N

∑
i=1

f (θi) θ
i ∼ p(θ). (3.24)

By definition7 (given in (3.23)) the expected value of a function f (θ) with respect to

random variable θ which is distributed according to p(θ) is the average of all values θ

can take weighted by their probability p(θ). In line (3.24), the computation of the inte-

gral is avoided by instead computing the mean of the function of interest evaluated on

a set of N samples {θ(i)}N
i=1 from the distribution p(θ). The strong law of large num-

bers guarantees that this mean will converge to the expected value with increasingly

many samples. Thus, with N→ ∞ the Monte Carlo approximation of any expectation

becomes exact.

We are interested in using the Monte Carlo method for approximating complex prob-

ability distributions, i.e., posterior distributions in Bayesian models. How does that

relate to the MC definition in terms of expectations above? We can formulate the

probability of any value (e.g., θ = 5) in terms of an expectation,

p(θ = 5) = E I{5}(θ). (3.25)

where I{5}(θ) is an indicator function which evaluates to 1 if θ = 5 and is 0 otherwise.

A Monte Carlo approximation of a probability distribution over all possible values z

within the support of p(θ) can thus be written as,

p(θ = z)≈ 1
N

N

∑
i=1

I{z}(θ
(i)) θ

(i) ∼ p(θ). (3.26)

This rather abstract procedure of approximation by simulation is actually very intuitive.

In the context of Bayesian inference, simulation refers to generating values from an

underlying probability distribution, but it equally works for real physical simulation

of events. Imagine, for example, one wants to find out whether a die is fair or not,

i.e., whether the distribution p(θ) over all possible outcomes of die rolls θ ∈ {1...6} is

uniform. This distribution can be approximated by rolling the die N times (i.e., drawing

N samples from p(θ)), recording the outcomes, and computing the distribution over

7We use p(θ) as a generic distribution, which may of course depend on further variables, but we
drop those here for ease of notation.
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outcomes using (3.26). The estimate for p(θ) is guaranteed to become increasingly

accurate with more samples (i.e., rolls of the die).

Unfortunately, plain Monte Carlo simulation as discussed above is often practically

infeasible. The complex functions of interest cannot be simulated (or sampled from)

efficiently (or at all). A wide range of sophisticated sampling techniques based on the

Monte Carlo principle have been developed which avoid the explicit evaluation of the

function of interest, and we discuss two of them below: Markov chain Monte Carlo (in

the context of Gibbs sampling; Section 3.3.2) and importance sampling (in the context

of particle filtering; Section 3.3.3).

3.3.2 Gibbs Sampling

Gibbs samplers provide a way to obtain samples from distributions which can be only

evaluated up to a constant, employing the strategy of Markov chain Monte Carlo sam-

pling. We first describe the idea underlying Markov chain Monte Carlo, and then

describe the Gibbs sampler.

3.3.2.1 Markov Chain Monte Carlo

Direct iid. sampling from the posterior distribution as required in plain Monte Carlo

sampling is often intractable. Rather than generating truly independent and identi-

cally distributed samples, it is often more straightforward to draw samples {θ1, ...,θN}
which are slightly dependent. Samples can be drawn according to a Markov Chain

defined according to p(θ) (Hastings, 1970). A Markov chain is essentially a random

walk over a graph, where vertices (called ‘states’) correspond to possible values of θ,

and the outgoing edges from each vertex define a probability distribution over all next

states conditioned on the current state. It satisfies the Markov property in the sense that

the following state is independent of all previous states given the current state. We can

perform a random walk over this graph in steps n = {1...N}, and draw θn conditioned

on the previous draw θn−1:

θ
n ∼ p(θn|θn−1). (3.27)

Note that (a) we generate samples through repeated evaluation of local probability

distributions, or state transitions, and thus avoid to evaluate the complex distribution
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p(θ) (which prevented us from using plain Monte Carlo simulation); and (b) that the

draws from p(θ) are no longer independent and identically distributed so that the strong

law of large numbers used in the motivation of Monte Carlo methods no longer holds.

Under some circumstances the sequence of states {θ1, ...,θn} visited in the random

walk corresponds to a sample from p(θ), i.e., each state is visited with a probability

proportional to p(θ), which means that p(θ) is the stationary distribution of the chain.

Conceptually, these conditions include:

• The random walk must be initialized in some way, but the sample resulting from

a (long enough) random walk should be independent of the starting point. More

formally, after an initial period, the probability of reaching any state θ does not

depend on the initial state θ0.

• In order for a state sequence of a long random walk to be a valid sample from

p(θ) we must make sure that we can in principle visit all areas under the support

of p(θ) at any time during the walk, i.e., we do not want to “get stuck” in a

particular sub-space of the distribution. Consequently, our random graph must

be highly connected, and guarantee for an infinitely long walk started at any

particular state z that the probability to re-visit z in the future is 1.

Concretely a valid Markov chain must be ergodic, which means that it must be ape-

riodic, irreducible and positive recurrent. However, we will leave our introduction on

this conceptual level, and invite the interested reader to learn more about these concepts

in excellent mathematically rigorous introductions to Markov chains and MCMC such

as Bishop (2006) and Murphy (2012).

We will now introduce the Gibbs sampler which is one method for constructing a valid

Markov chain for sampling from a target distribution p(θ).

3.3.2.2 The Gibbs Sampler

The Gibbs sampler (Geman and Geman, 1984; Bishop, 2006) is a Markov Chain Monte

Carlo method, which is particularly suitable for sampling from probability distributions

over high-dimensional parameters θ = {θ1, ...,θI} (i.e., when I is large), as it is the

case in the models developed in this thesis. We focus on Gibbs sampling for sampling

from the posterior distribution over parameters given data p(θ|y). The Gibbs sampler

constructs an ergodic Markov chain over parameter samples from p(θ|y) as a sequence
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Algorithm 1 The Gibbs Sampler.
1: Initialize the sampler to a random starting point θ

0←{θ0
1,θ

0
2, ...,θ

0
I }

2: repeat
3: Run the sampler for b burn-in iterations

4: for each iteration n = [b+1...] do
5: for each dimension i = [1..I] do
6: θn

i ∼ p(θn
i |θ−i) = p(θn

i |θn
1, ...θ

n
i−1,θ

n−1
i+1 ,θ

n−1
I )

7: if lag > ` then
8: return a sample from the joint posterior distribution

θ
n = {θn

1,θ
n
2, ...,θ

n
I }

9: until the desired number of samples has been collected.

of samples from full conditional distributions of each individual parameter θi. The full

conditional distribution for parameter θi defines the distribution over values for this

parameter conditioned on the current values of all parameters other than θi. We denote

this set as θ−i:

θi ∼ p(θi|θ−i,y) = p(θi|θ1, ...,θi−1,θi+1, ...,θI,y). (3.28)

The full conditional distributions must be normalized, because it must be possible to

draw samples from them. Luckily they are one-dimensional by definition, which typ-

ically allows for proper normalization. In our case these full conditionals are discrete

distributions over a finite probability space, so normalization is feasible.

Why is this sequence of full conditional distributions a valid approximation of the

target posterior distribution, i.e., the joint distribution over θ = {θ1, ...,θI}? It turns

out that the full conditional distribution of any parameter θi is proportional to the joint

distribution over parameters θ:

p(θi|θ1, ...,θi−1,θi+1, ...θI) =
p(θ1, ...,θI)

p(θ1, ...,θi−1,θi+1, ...θI)
∝ p(θ1, ...,θI). (3.29)

The complete algorithm of the Gibbs sampler is displayed in Algorithm 1. The sampler

starts with a randomly initialized parameter vector θ0. It then repeatedly iterates over

the components of θ and resamples each θi individually from its full conditional dis-

tribution (equation (3.28)). Periodically, the current value of θ is returned as a sample.

The algorithm terminates when the required number of samples are obtained. There

are a few practical intricacies which arise with MCMC samplers in general and the

Gibbs sampler in particular:
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• The values of parameters θ are usually randomly initialized, which means that

the sampler starts off at an arbitrary position in the state space, probably some

distance away from the high-probability region under the posterior distribu-

tion p(θ|y). Although it is guaranteed through the ergodicity property that the

sampler will ultimately produce samples distributed according to the posterior

distribution, it needs a number of iterations to reach this distribution. This initial

period is called burn-in period. It is difficult to exactly determine the point at

which the stationary distribution is reached, and it is common practice to discard

a safely large set of initial samples.

• Recall that MCMC samples are generated from a Markov chain producing sam-

ples from p(θn|θn−1,y) and hence locally correlated. To obtain a set of samples

which are as close to iid as possible in an efficient way8 it is common practice to

include a lag ` and only collect every `th sample (a process called “thinning”).

Again setting ` to an appropriate value is more of an art than a science.

3.3.2.3 Collapsed Gibbs Sampling for Dirichlet-Multinomial Models

How does this relate to the models presented in this thesis? Recall that we sample

values from the posterior distribution over parameters θ. Recall also, that parameters

in Bayesian models comprise both variables (e.g., the category of an observation), as

well as the parameters governing the distributions from which latent- and observed

variables are generated (φ).

As discussed in Section 3.2.2.1 we are often not interested in the distribution-governing

parameters φ themselves9, but rather in the distribution over value assignments to latent

variables of observations x (e.g., in assigning a category label i ∈ {1...I} to an obser-

vation x j). We showed in Section 3.2.2.1 (equation (3.12), page 37) that the conjugate

pair of the Dirichlet and the Multinomial distribution allows to analytically integrate

over parameters φ.

In the context of a Gibbs sampler, analytically integrating (or collapsing or marginal-

izing) Multinomial parameters means that we do not need to resample their value ex-

plicitly, but that they are implicitly represented through the sufficient statistics of value

8This method can be useful to reduce computational and/or memory requirements of computing
estimates, but it will not improve the accuracy of the estimates (Link and Eaton, 2012).

9Although they can be recovered given an estimated model.
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assignments to variables. Collapsing parameters of a model constrains the state space

and often leads to more efficient samplers.

Collapsed Gibbs sampling then corresponds to repeatedly sampling each individual

latent variable from its full conditional distribution, i.e., the distribution over values

assigned to variable x j conditioned on the values assigned to all other variables x− j

in the model, while implicitly marginalizing over the data-generating distribution φ.

These full conditional distributions evaluate to a very simple form:

p(x j = i|x− j,α) =
∫

p(x j = i|φ)p(φ|x− j,α)dφ (3.30)

∝
n− j

i +α

∑i′ n
− j
i′ +α

, (3.31)

where n− j
i is the count of assignments of value i to any observation, excluding counts

related to observation x j. The probability that observation j has value i is proportional

to the number of times value i is assigned to any other observation x− j. In this way

values are repeatedly re-assigned to variables without ever explicitly representing the

parameter φ in the sampler. See Appendix A for a detailed derivation.

3.3.3 Particle Filtering

Markov chain Monte Carlo methods, like the Gibbs sampler introduced above, iterate

repeatedly over the entire input data set in order to produce samples from the posterior

distribution. This can be undesirable for various reasons. The available data might

grow over time and updating the posterior estimate requires to re-run the sampler,

which can be expensive. Furthermore, a (vanilla) MCMC sampler holds the entire data

set in memory, which is implausible from a cognitive point of view. For learning to

occur it is not necessary to have access to all available information or hold it in memory.

In this section we introduce particle filters, a method for incrementally estimating a

posterior distribution.

Chapters 4 and 5 in this thesis introduce Bayesian models for investigating the incre-

mental process of human category learning, where novel information from observed

stimuli is immediately used to update the category representation (Bornstein and Mash,

2010; Diaz and Ross, 2006). Particle filters provide a mathematically principled way

to model incremental learning of Bayesian model parameters (Sanborn et al., 2006).
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Particle filters estimate the posterior distribution over unobserved parameters (e.g., pos-

sible categorizations of stimuli) p(θ|y) in real time, as data is observed. Each time

point t corresponds to an observation of a data point (e.g., stimulus) yt . We use θt

to denote a concrete parameterization at time t (e.g., a specific categorization of all

stimuli y1:t observed up to time t). At each time t, we want to estimate the posterior

distribution over parameters given all data observed up to that time p(θt |y1:t). Particle

filters maintain an approximation of these distributions as a set of weighted samples:

p(θt |y1:t)∼
{(

θ
(i)
t ,w(i)

t

)}N

i=1
, (3.32)

where (θ,w) refers to a (sample, weight) tuple, {·}N
1 denotes a set of N such tuples,

and ∼ (by slight abuse of notation) means “is represented as”. This set of particles is

updated incrementally from a representation at time t−1 to a representation at time t,

with every incoming stimulus yt ,

p(θt−1|y1:t−1)∼
{(

θ
(i)
t−1,w

(i)
t−1

)}N

i=1

yt−−−→ p(θt |y1:t)∼
{(

θ
(i)
t ,w(i)

t

)}N

i=1
. (3.33)

Particle filters use sequential importance sampling (SIS) for efficiently and repeatedly

computing this update. SIS approximates Bayesian optimal filtering which defines the

exact way for recursively estimating a Bayesian posterior distribution but is compu-

tationally infeasible (see e.g., (Särkkä, 2013)). A well-known property of SIS is that

the approximation of the target distribution decreases in quality over time. In order to

alleviate this problem, particle filters involve an additional resampling step. Resam-

pling provides a way to periodically re-position the filter to high-probability areas of

the sample space.

Figure 3.2 illustrates the particle filtering process, and Algorithm 2 displays it algo-

rithmically. We derive importance sampling (Section 3.3.3.1) and sequential impor-

tance sampling (Section 3.3.3.2), before we discuss resampling (Section 3.3.3.3). Sec-

tion 3.3.3.4 concludes with a brief discussion of Rao-Blackwellized particle filtering.

3.3.3.1 Importance Sampling

At each time t the particle filter maintains a sample from the posterior distribution

p(θt |y1:t). As discussed previously, exact sampling from Bayesian posterior distribu-

tions is often impossible. Instead, particle filters use importance sampling (IS; Geweke

1989; Bishop 2006) which approximates a complex target distribution p(θ|y) with
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samples from a simpler importance distribution q(θ|y). It uses the following identity

of the Monte Carlo principle,∫
f (θ)p(θ|y)dθ ≈ 1

N

N

∑
i=1

f (θ(i)) θ
(i) ∼ p(θ|y) (3.34)

=
∫

f (θ)
p(θ|y)
q(θ|y)

q(θ|y) ≈ 1
N

N

∑
i=1

p(θ(i))|y)
q(θ(i)|y)

f (θ(i)) θ
(i) ∼ q(θ|y) (3.35)

=
N

∑
i=1

w(i) f (θ(i)). (3.36)

Equation (3.34) repeats the Monte Carlo principle as introduced in Section 3.3.1. In

(3.35) we multiply and divide by the same factor, thus not changing the equation, but

reformulating it such that the sampling distribution is now q(θ|y). In the last step

we rewrite the approximation (3.35) in a way that introduces importance weights w(i).

Importance weights w(i) correct for the discrepancy between the importance and the

target distribution. In order make (3.36) a valid approximation, the importance weights

must be defined as,

w̃(i) =
p(y|θ(i))p(θ(i))

q(θ(i)|y)
, (3.37)

and subsequently normalized such that they sum to one:

w(i) =
w̃(i)

∑ j w̃( j)
. (3.38)

And as a result, it is no longer necessary evaluate or sample from the complex target

distribution p(θ|y).

In sum, importance sampling consists of three steps: (1) draw N samples {θ(i)}N
i=1

from the importance distribution q(θ|y); (2) compute the unnormalized importance

weights (equation (3.37)); (3) normalize the importance weights to sum to one (equa-

tion (3.38)).

3.3.3.2 Sequential Importance Sampling

Particle filtering uses the importance sampling procedure described above repeatedly,

for obtaining an estimate of the target distribution at each time t. Instead of generating a

new sample from scratch at each time, the existing sample from time t−1 is recursively

updated with new information. Sequential importance sampling (Doucet et al., 2001)

defines an efficient way for recursively updating samples and their associated weights.
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The process underlying sequential importance sampling is illustrated in Figure 3.2

(top). Parameters develop through a first-order Markov Process, i.e., at any time the

distribution over θ depends only on θt−1, and observations yt are independent given

parameters θt . The posterior distribution over parameters p(θ1:t |y1:t) can be defined

recursively, by updating an existing distribution over parameters p(θ1:t−1|y1:t−1),

p(θ1:t |y1:t) (3.39)

∝ p(θ1)p(y1|θ1)
t

∏
n=2

p(θn|θn−1)p(yn|θn) (3.40)

= p(θ1)p(y1|θ1)

[
t−1

∏
n=2

p(θn|θn−1)p(yn|θn)

]
︸ ︷︷ ︸

p(θ1:t−1|y1:t−1)

p(θt |θt−1)p(yt |θt) (3.41)

= p(θ1:t−1|y1:t−1)p(θt |θt−1)p(yt |θt). (3.42)

where we use the Markov properties introduced above in (3.40). We get (3.41) by

separating out the last observation t. We then re-collapse times t = [1...t−1] obtaining

one factor corresponding to the posterior distribution at time t− 1, which is updated

with the new information from time t (equation (3.42)).

In order to be able to sequentially estimate this target, we need a recursive definition

of the importance distribution,

q(θ1:t |y1:t) = q(θ1:t−1|y1:t−1)q(θt |θ1:t−1,y1:t). (3.43)

Following the idea of importance sampling (Section 3.3.3.1) and using (3.42) as the

target distribution and (3.43) as the importance distribution, we can define importance

weights. It turns out that the importance weights can also be defined recursively. We

obtain the weight of the ith particle at time t, w(i)
t , by updating its previous weight at

time t−1, w(i)
t−1,

w(i)
t ∝

p(θ(i)1:t−1|y1:t−1)

q(θ(i)1:t−1|y1:t−1)︸ ︷︷ ︸
w(i)

t−1

p(θ(i)t |θ
(i)
t−1)p(yt |θ

(i)
t )

q(θ(i)t |θ
(i)
1:t−1,y1:t)

= w(i)
t−1

p(θ(i)t |θ
(i)
t−1)p(yt |θ

(i)
t )

q(θ(i)t |θ
(i)
1:t−1,y1:t)

.

(3.44)
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Figure 3.2: Schematic illustration of the particle filtering algorithm. A set of N = 6

particles incrementally approximates the target distribution (graph). Particles are de-

noted as circles, and circle size represents the particle weights. At each time t, the

existing set of particles from t− 1 is updated with new incoming information, and the

particle weights are updated (top; Sequential Importance Sampling). Periodically ‘bad’

(low weight) particles are replaced with ‘good’ (high weight) particles (resampling; mid-

dle). After resampling, resampled particles are slightly perturbed to increase sample

diversity (rejuvenation; bottom).

The Optimal Importance Distribution. The importance distribution q(θ1:t |y1:t) can

be chosen at liberty, and is usually defined such that it is easy to sample from. The (se-

quential) importance sampler is most efficient, however, when the importance distribu-

tion is as similar to the target distribution as possible. The ‘optimal’ importance distri-

bution is defined such that it minimizes the variance among importance weights (Zarit-

skii et al., 1976), and is given by,

q(θ1:t |θ1:t−1,y1:t) = p(θt |θt−1,yt). (3.45)

Note that this distribution is locally optimal because it is conditioned on the fact that

the sequence of sampled parameters remains unchanged. Otherwise the algorithm

would cease to be sequential. It corresponds to the posterior distribution over parame-
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ters θt considering both prior information from the parameter estimate θt−1 as well as

information from the current observation yt . Under the optimal importance distribu-

tion, the sample weights correspond to the predictive likelihood of observation yt :

w(i)
t = w(i)

t−1
p(θ(i)t |θ

(i)
t−1)p(yt |θ

(i)
t )

q(θ(i)t |θ
(i)
1:t−1,y1:t)

copy (3.44)

= w(i)
t−1

p(θ(i)t |θ
(i)
t−1)p(yt |θ

(i)
t )

p(θ(i)t |θ
(i)
t−1,yt)

(3.46)

= w(i)
t−1 p(θ(i)t |θ

(i)
t−1)p(yt |θ

(i)
t ,θ

(i)
t−1)

p(yt |θ
(i)
t−1)

p(yt |θ
(i)
t−1,θ

(i)
t )p(θ(i)t |θ

(i)
t−1)

(3.47)

∝ w(i)
t−1 p(yt |θ

(i)
t−1) (3.48)

= w(i)
t−1

∫
p(θt |θ

(i)
t−1)p(yt |θt)dθt (3.49)

We we substitute the definition of the optimal importance distribution in (3.46); and

apply Bayes rule to p(θt |θ
(i)
t−1,yt) in (3.47); cancel terms in (3.48), and substitute the

definition of predictive likelihood in equation (3.49) (as introduced in Section 3.2,

p. 33). The resulting predictive likelihood is the probability of the observation at time t

given the model state at time t−1. Computing this involves integrating over all possi-

ble parameter values at time t. In models with a discrete and finite state space this is

usually possible (the integral becomes a finite sum). We will use the optimal impor-

tance function in the particle filters developed in this thesis, which we can do efficiently

because we use a collapsed representation of the state space (see Rao Blackwellized

particle filtering, Section 3.3.3.4).

In sum, sequential importance sampling in particle filtering proceeds as follows (cf., Al-

gorithm 3 lines 1–8, and our illustration in Figure 3.2). We assume some initial set of

particles θ0. Then at each time t we first update our particle sample by drawing from

the recursive importance distribution (which is approximated through as sample as our

current set of available particles from time t − 1). Secondly, we update the particle

weights according to (3.44), and finally normalize the weights to sum to one.

Unfortunately, the method as described above tends to be ineffective: even under the

optimal importance distribution, the approximation of the target distribution quickly

decreases in quality due to the repeated approximations through a limited number of

samples from an importance distribution. Practically, a poor approximation manifests

in degenerate particle weights: after a few iterations, few or only one particle accu-

mulates the vast majority of particle weight. The set of weighted particles at time t
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Algorithm 2 The Particle Filtering Algorithm.
1: for particle i = {1, ...,N} do . Initialization

2: θ
(i)
0 ∼ q0(θ)

3: for time t = {1, ...T} do
4: for particle i = {1, ...,N} do . Sequential Importance Sampling

5: sample θ
(i)
t ∼ q(θ1:t |θ1:t−1,y1:t)

6: update samples θ
(i)
1:t ←{θ

(i)
1:t−1,θ

(i)
t }

7: update weights w̃(i)
t ∝ w(i)

t−1
p(θ(i)t |θ

(i)
t−1)p(yt |θ

(i)
t )

q(θ(i)t |θ
(i)
1:t−1,y1:t)

8: normalize weights w(i)
t = w̃(i)

t

∑ j w̃( j)
t

9: if ESS < threshold then . Resampling

10: draw with replacement θ̃1:t ∼
{

Multinomial(wt)
}N

k=1
11: new sample θ1:t ← θ̃1:t

12: re-set weights wt =
1
N

in Figure 3.2 (center) illustrates degenerate particle weights. The posterior distribution

is then effectively approximated through a point estimate. We now discuss methods to

alleviate this problem.

3.3.3.3 Resampling

Resampling is an effective and widely used method for recovering from a degenerate

set of samples (Gordon et al., 1993; Doucet and Johansen, 2008). It can be straight-

forwardly integrated into sequential importance sampling, leading to the sequential

importance resampling (SIR) algorithm. All particle filters derived in this thesis use

SIR. Intuitively, whenever the weight variance exceeds a threshold (i.e., few particles

have accumulated too much weight), a subset of high-weight particles is probabilisti-

cally selected from the full set of particles, and only this set will be propagated further.

Given a set of N particles and their associated weights, a new set of particles is sampled

by drawing N times with replacement from a Multinomial distribution parameterized

by the particle weights. Any particle which is not sampled in this process ‘dies out’,

and will not be propagated further. After the resampling step, weights are set uniformly

to 1
N , which is valid since the old weights are implicitly represented in the sample.

Resampling is displayed in lines 9–12 in Algorithm 2, and illustrated in Figure 3.2.
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It is common to define a threshold for acceptable variance among the particle weights,

and resample the set of particles whenever this threshold is crossed. A common choice

of threshold is the Effective Sample Size (ESS) which measures the number of particles

which effectively contribute to the sample, i.e., have non-negligible weight:

ESS =
1

∑i(w
(i)
t )2

, (3.50)

where ESS decreases with increasing variance among the particle weights. Whenever

the ESS falls below a threshold, a resampling step is executed.

Resampling allows to replace low-weight particles with high-weight particles by re-

positioning the sample in high probability space under the posterior distribution. How-

ever, it introduces additional noise to the sampling process. After all, samples from the

posterior distribution might be pruned which seem poor at time t but may become more

fitting in the future after more data was observed. Furthermore, it leads to copies of

identical particles being propagated. While focusing the sampler on high-probability

areas under the target distribution, it does so at the cost of diversity in the sample.

Resampling can consequently result in an impoverished set of samples.

Rejuvenation Sample impoverishment can be minimized by keeping resampling

steps to a minimum, e.g., by choosing an appropriate threshold for the effective sample

size. In addition, impoverished samples can be improved by ‘disturbing’ each resam-

pled particle slightly, enhancing the diversity in the set of resampled particles. This

approach is called rejuvenation, and is part of widely used variants of particle filters

such as the resample-move algorithm (Gilks and Berzuini, 2001). Rejuvenation is il-

lustrated in the bottom part of Figure 3.2. Immediately after resampling, a limited

number of MCMC steps are executed individually within each resampled particle. The

MCMC sampler (e.g., a Gibbs sampler) is constructed such that its stationary distri-

bution corresponds to the target distribution of the particle filter. Consequently, after

rejuvenation the particles are still a valid sample from the target distribution. We use

rejuvenation as described above in the particle filters developed in this thesis.

3.3.3.4 Rao-Blackwellized Particle Filtering

Some models allow to analytically integrate over subsets of their parameters. We

discussed this marginalization in the context of Dirichlet-Multinomial models (Sec-
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tion 3.2.2.2), and the collapsed Gibbs sampler (Section 3.3.2.3). The same idea can

be used with particle filters, which results in Rao-Blackwellized particle filters. Rao-

Blackwellized particle filters sequentially estimate only the remaining model parame-

ters, which cannot be marginalized (Liu and Chen, 1998; Doucet et al., 2000a).

The Rao-Blackwellized particle filter is generally advantageous to use because it oper-

ates on a reduced state space which has been shown to lead to improved efficiency and

robustness (Liu and Chen, 1998; Doucet et al., 2000b). Rao-Blackwellized particle

filters have been employed for incremental clustering problems which are similar to

those discussed in this thesis (Sanborn et al., 2006; Canini et al., 2009).

We use Rao-Blackwellized particle filtering throughout this thesis. Intuitively, our par-

ticle filters will incrementally assign discrete latent labels (e.g., categories) to observa-

tions over time. The continuous parameters underlying the Multinomial distributions

in our models are collapsed, i.e., not estimated explicitly, but implicitly represented

through their sufficient statistics.

3.4 Summary

In this chapter we reviewed the mathematical background underlying the models de-

veloped in this thesis. We began by motivating Bayesian modeling as a framework

for computational investigations of cognitive phenomena which formulates inductive

inference under uncertainty in a mathematically principled way. We also motivated

sampling-based approximate Bayesian inference as a flexible and general method to

explore the processes and limitations underlying human cognition. The second part of

the chapter formally introduced Bayesian statistical modeling, discussed prior distri-

butions and likelihood functions relevant to the models of this thesis, and demonstrated

their characteristics and limitations. The final part introduced the Monte Carlo method

in the context of approximating the posterior distribution of hierarchical Bayesian

models. Two concrete instantiations were introduced: a Gibbs sampler, which uses

the Markov chain Monte Carlo technique and operates in a batch fashion, and a parti-

cle filter, which approximates the posterior distribution sequentially.

In the following chapters will introduce cognitively motivated models of category

learning and meaning development which make use of the theoretical framework out-

lined in this chapter.



Chapter 4

Incremental Bayesian Category

Learning

The task of categorization, in which people cluster stimuli into categories and then use

those categories to make inferences about novel stimuli, has long been a core problem

within cognitive science. Understanding the mechanisms involved in categorization,

particularly in category acquisition, is essential, as the ability to generalize from ex-

perience underlies a variety of common mental tasks, including perception, learning,

and the use of language. As a result, category learning has been one of the most ex-

tensively studied aspects in human cognition, both from an empirical and modeling

perspective. In a typical experiment, participants are taught the category membership

of a set of training stimuli and then asked to generalize to a set of test stimuli. Com-

putational models are then evaluated on their ability to predict the resulting patterns of

generalization (Anderson, 1991).

Categorization is a classic example of inductive inference, i.e., extending knowledge

from known to novel instances. When learning about a new category of objects, hu-

mans need to infer the structure of the category from examples of its members. The

knowledge acquired through this process can ultimately be used to make decisions

about how to categorize new stimuli. Categorization presents a difficult inference

problem: the learner is faced with limited data (e.g., a few concept observations),

and has to evaluate several categorization hypotheses given this data without know-

ing exactly which category structure is correct. Furthermore, inference proceeds in-

crementally, learners encounter data and update their beliefs over time, making new

57
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generalizations when new information becomes available (Bornstein and Mash, 2010;

Diaz and Ross, 2006). To complicate matters, categorization is an example of a joint

inference problem. For instance, experimental evidence suggests that the development

of categories and their characteristic features emerge simultaneously in one process

(Goldstone et al., 2001; Schyns and Rodet, 1997). It is also well-known that children’s

word learning improves when they form some abstract knowledge about what kinds of

semantic properties are relevant to what kinds of categories (Jones et al., 1991; Col-

unga and Smith, 2005; Colunga and Sims, 2011). This abstract knowledge is argued

to emerge by generalizing over the learned words. So, words that have been learned

contribute to generalized abstract knowledge about word meanings and semantic cate-

gories, which then guide subsequent word learning.

In this chapter, we present a computational model which tackles the problem of learn-

ing categories and their characteristic features from natural language text. Our model

is presented with concepts such as {parrot, seagull, chocolate, sausage} and their local

context, and groups them into categories (BIRD and FOOD in this example) based on

their contextual similarity. Although concepts like parrot and seagull might rarely co-

occur together explicitly, they do occur in similar contexts (e.g., {croak,lay-eggs}1).

Analogously, the concepts chocolate and sausage might rarely be observed together in

text, however, they share contexts such as {eat,breakfast,healthy}. We thus ap-

proximate category-specific features with natural language context, and show that our

model learns meaningful categories as well as descriptive features for them.2 More

technically, our model of category acquisition is based on the key idea that learners

can adaptively form category representations that capture the structure expressed in

the observed data. We model category induction as two interrelated sub-problems:

(a) the acquisition of features that discriminate among categories, and (b) the grouping

of concepts into categories based on those features. Our model learns incrementally

as data is presented and updates its internal knowledge state locally without systemat-

ically revising everything known about the situation at hand.

We formulate our categorization model in a probabilistic Bayesian setting. Probabilis-

tic approaches provide a computational framework for modeling inductive problems,

1Throughout this thesis we will use small caps to denote CATEGORIES, italics to denote their mem-
bers, and typewriter fonts for their features.

2We use the terms concepts and categories to refer to basic level and SUPERORDINATE categories,
respectively. Our model in turn infers superordinate categories based on the features of their basic level
category members.
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by identifying ideal or optimal solutions to them and then using algorithms for ap-

proximating these solutions (cf., Section 3.1 for an extended discussion of Bayesian

cognitive modeling). Several probabilistic category learning models have been pro-

posed in the literature (Anderson, 1991; Ashby and Alfonso-Reese, 1995; Griffiths

et al., 2008; Sanborn et al., 2010; Canini, 2011), essentially viewing category learning

as a problem of density estimation: determining the probability distributions associ-

ated with different category labels. Our model learns categories using a particle filter

(Doucet et al., 2001), a sequential Monte Carlo (SMC) inference mechanism which

allows to update a probability distribution over time, while sequentially integrating

newly observed data. Section 3.3.3 contains a technical introduction to particle filters.

Monte Carlo algorithms offer a plausible proxy for modeling human learning and have

been previously used (Börschinger and Johnson, 2011, 2012; Levy et al., 2009; San-

born et al., 2010; Griffiths et al., 2008) to explain how humans might be performing

probabilistic inference, essentially reducing probabilistic computations to generating

samples from a probability distribution.

Historically, the stimuli involved in categorization studies (either laboratory experi-

ments or computational simulations) tend to have a small number of manually speci-

fied features, and are either concrete objects (such as physical objects, Bornstein and

Mash 2010) or highly abstract ones (such as binary strings, colored shapes, Medin and

Schaffer 1978; Kruschke 1993; Lee and Navarro 2002). Most existing models focus on

adult categorization, in which it is assumed that learners have developed categorization

mechanisms and a large number of categories have already been learnt. Those models

are typically evaluated against behavioral data elicited in laboratory experiments from

adult participants who are assumed to have acquired and are able to make use of rich

prior world knowledge. A notable exception is Anderson’s (1991) rational model of

categorization (see also Griffiths et al. 2007a) where the learner starts without any pre-

defined categories and stimuli are clustered into groups as they are encountered. Our

model is based on the same assumption (i.e., it learns categories directly from data),

but instead uses natural language stimuli (i.e., words).

The idea of modeling categories using words as a stand-in for their referents has been

previously used to explore categorization-related phenomena such as semantic priming

(Cree et al., 1999) and typicality rating (Voorspoels et al., 2008), to evaluate prototype

and exemplar models (Storms et al., 2000), and to simulate early language category ac-

quisition (Fountain and Lapata, 2011). The idea of using naturalistic corpora as a proxy
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for people’s representation of semantic concepts has received little attention. Instead,

featural representations, called feature norms, have played a central role in psycholog-

ical theories of semantic cognition and knowledge organization and many studies have

been conducted to elicit detailed knowledge of features (Smith et al., 1974; McRae

et al., 2005; Vinson and Vigliocco, 2008; Rogers and McClelland, 2004). In a typi-

cal procedure, participants are presented with a word and asked to generate the most

relevant features or attributes for its referent concept (e.g., McRae et al. 2005). Our

approach replaces feature norms with representations derived from words’ contexts in

corpora. We assume that words whose referents exhibit differing features are likely

to occur in correspondingly different contexts and that these differences in usage can

provide a substitute for featural representations.

While this is an impoverished view of how categories are acquired – it is clear that

they are learnt through exposure to the linguistic environment and the physical world

– perceptual information relevant for extracting semantic categories is to a large extent

redundantly encoded in linguistic experience (Riordan and Jones, 2011). Besides, there

are known difficulties with feature norms such as the small number of words for which

these can be obtained, the quality of the attributes, and variability in the way people

generate them (see Zeigenfuse and Lee 2010 for details). Focusing on natural language

categorization allows us to build models with theoretically unlimited scope. Moreover,

the corpus-based approach is attractive for modeling the development of linguistic

categories. If simple distributional information really does form the basis of a word’s

cognitive representation (Harris, 1954; Redington and Chater, 1997; Braine, 1987), this

implies that learners are sensitive to the structure of the linguistic environment during

language development. As experience with a word accumulates, more information

about its contexts of use is encoded, with a corresponding increase in the ability of the

language learner to use the word appropriately and make inferences about novel words

of the same category.

In the remainder of this chapter, we review previous research on categorization plac-

ing emphasis on natural language categories and Bayesian models. Next, we present

our categorization model and its incremental learning mechanism, and describe sev-

eral experiments assessing its performance when applied to a large corpus as well as

to a smaller corpus of child-directed speech. Experimental results show that our incre-

mental learner obtains meaningful categories which yield a closer fit to behavioral data

compared to related models whilst at the same time acquiring features which character-
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ize the learnt categories. In all cases, we evaluate the induced categories by comparing

model output against a gold standard set of categories and concepts created by humans.

4.1 Category Learning from Natural Language

Numerous theories as to how humans categorize objects have been proposed and exten-

sively tested, and here we highlight those relevant to our modeling approach. Prototype

theory (Rosch, 1973) represents categories through an idealized prototypical member

possessing the features which are critical to the category. Membership in the cate-

gory is determined by comparing the observed features of a possible member against

those of the prototype. For example, the characteristic features of FRUIT might include

contains seeds, grows above ground, and is edible.

Prototype theory has been challenged by the exemplar approach (Medin and Schaffer,

1978). In this view, categories are defined not by a single representation but rather

by a list of previously encountered members. An exemplar model simply stores those

instances of fruit to which it has been exposed (e.g., apples, oranges, pears). A new

object is grouped into the category if it is sufficiently similar to one or more of the

FRUIT instances stored in memory. Practically, exemplar models and prototype models

can account for the same range of phenomena. Our Bayesian model of categorization

resembles an exemplar model: information from all encountered concept observations

is stored and contributes to the representation of their particular category.

The knowledge approach to categories takes a somewhat different standpoint assert-

ing that categories are formed on the basis of people’s general knowledge about the

world. This view is perhaps best illustrated by what Barsalou (1985) calls goal-derived

categories, i.e., categories that are designed based on how their members fill some

externally-determined role. For example, the category of BREAKFAST FOODS, con-

sisting of concepts like bacon, eggs, or grits is quite clearly a category people can and

do form, and about which they can make meaningful judgments, yet there is very lit-

tle similarity between members, making it difficult to account for using an exemplar

model or a prototype model. Our own model learns from large corpora which can be

viewed as a rich source of world knowledge. It makes use of the knowledge encoded

in a a word’s context to form abstractions that are qualitatively different from those

that can be encapsulated by either exemplars or prototypes. We show in our experi-



62 Chapter 4. Incremental Bayesian Category Learning

ments that the kinds of categories and features our model induces are representative of

background knowledge.

Models and Modalities of Language Acquisition In this work we formulate a cat-

egorization model which learns from exposure to the distributional properties of the

linguistic environment. However, it is clear that when children learn language, they

are not only exposed to linguistic input but also to various types of perceptual input,

including visual context, prosody, gaze and body movement. Additionally, learning is

cross-situational – children learn words or concepts through repeated co-occurrence of

clues from different modalities in the environment (such as objects and their linguis-

tic labels) – which implies that learners combine information from both linguistic and

nonlinguistic context. Here, we briefly overview the ways in which various modalities

have been incorporated in computational models of language acquisition, and position

our own model in the context of this work. A more thorough discussion of this line of

prior work is presented in Chapter 2.

A variety of models on cross-modal word learning have been proposed. Word learning

is the process of creating a “mental lexicon” from linguistic input, identifying words

and their referents, and as such is a form of categorization. These models range from

combining raw speech with visual input (Roy and Pentland, 2002), or concrete objects

with words (Xu and Tenenbaum, 2007), to eliciting cross-situational co-occurrence

patterns of linguistic input and objects in speakers’ attention (Frank et al., 2009).

Acquisition of visual categories is an important and notoriously hard problem in the

area of computer vision, where large-scale systems require thousands of training ex-

amples with sophisticated features in order to be able to recognize classes of objects in

images. This stands in sharp contrast to humans who quickly and robustly recognize

objects regardless of scale or perspective. Fei-Fei et al. (2003) propose a Bayesian

model for category learning from purely visual image data incorporating prior knowl-

edge in the model and show that information based on previously acquired categories

boosts learning of new categories.

Another line of work investigates the joint process of word learning and object cate-

gorization showing that linguistic cues facilitate object recognition and vice versa (see

also Lupyan et al. 2007). Yu (2005) develops a joint model of lexical acquisition and

object categorization based on experimental evidence indicating that the two problems
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are interrelated. The model learns from linguistic and visual data (simplified as color,

shape and texture features). Specifically, subjects were asked to narrate a picture book

wearing a head-mounted camera to capture a first-person point of view while their

acoustic signals were being recorded (using a headset microphone). Similarly, Yu and

Ballard (2004) simulate joint word and object learning in adults based on descriptions

of nine objects paired with images from a head-mounted camera.

The models introduced above require complex and controlled multimodal input data,

which inherently limits their scope. While their aim is to support fundamental char-

acteristics of language acquisition it is unclear whether the models generalize to other

tasks or types of data. In this work we adopt a complementary approach. While we

consider a qualitatively coarser approximation of the learning environment, in the form

of linguistic corpora, this has the advantage of being able to test our models on a larger

scale. Below, we discuss our approach in more detail contrasting it to related work

focusing exclusively on categorization.

Natural Language Categorization Most experimental work on category modeling

and acquisition has revolved around laboratory experiments involving either real-world

objects (e.g., children’s toys; Starkey 1981), perceptual abstractions (e.g., photographs

of animals; Quinn and Eimas 1996), or abstract, artificial stimuli (e.g., dot patterns

or geometric shapes; Posner and Keele 1968 and Bomba and Siqueland 1983, respec-

tively). In most cases researchers using abstract or artificial stimuli to explore human

categorization would not assert that participants possess a distinct mechanism for dis-

tinguishing between categories of (for example) binary strings, but rather that the task

invokes a single, global mechanism for learning and applying categories. Our own

approach is no different, in that we treat word meaning as a proxy for conceptual

structure (Murphy, 2002) and do not suggest that (semantic) categories of words differ

significantly from the categories involving their real-world referents. We refer to this

task, of organizing words into categories based on their semantics, as natural language

categorization. While the idea of modeling categories using words as a stand-in for

their referents is of course not a new one, explicitly viewing categorization as the task

of organizing words into categories based on meaning allows us to make use of pow-

erful ideas from artificial intelligence and computational linguistics. Previous work

that could be described as natural language categorization has a recurring theme: the

use of feature norms to construct semantic representations for word meaning. Feature
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norms are traditionally collected through norming studies, in which participants are

presented with a word and asked to generate a number of relevant features for its ref-

erent concept (The most notable of these is probably the multi-year project of McRae

et al. (2005), which collected and analyzed features for a set of 541 common English

nouns). The results of such studies can be interesting in their own right, as the fre-

quency and distribution of generated features can provide considerable insight into the

nature of participants’ categories — but they can also provide material for evaluating

prototype and exemplar models.

Existing research into natural language categorization has used such featural represen-

tations to explore a wide range of categorization-related phenomena. Heit and Barsa-

lou (1996) demonstrated their instantiation principle within the context of natural lan-

guage concepts, Storms et al. (2000) contrasted exemplar and prototype models using

a task-based evaluation, Cree et al. (1999) used feature-based representations to model

semantic priming, and Voorspoels et al. (2008) model typicality ratings for natural lan-

guage concepts. In all of these models words are used as a proxy for real-world stimuli,

and feature norms as a proxy for people’s perceptual experiences of those stimuli. Our

approach is to replace feature norms with representations derived from words’ con-

text in corpora, i.e., to use distributional semantics to approximate people’s perceptual

representations of real-world stimuli. While this approach represents only a partial

view of how people acquire and use categories, experimental comparisons of feature-

based and corpus-based categorization models indicate that the latter represent a viable

alternative to the feature norms typically used (Fountain and Lapata, 2010).

Our work is closest to Fountain and Lapata (2011) who also develop a corpus-based

model of natural language categories drawing inspiration from semantic networks

(Collins and Loftus, 1975). In this framework, each node is a word, representing a

concept (like BIRD). With each node is stored a set of properties (like can fly or

has wings) as well as links to other nodes (like CHICKEN). A node is directly linked

to those nodes of which it is either a subclass or superclass (i.e., BIRD would be con-

nected to both CHICKEN and ANIMAL). High-level nodes representing large categories

are connected (directly or indirectly) to many instances of those categories, whereas

nodes representing specific instances are at a lower level, connected only to their su-

perclasses. A word’s meaning is expressed by the number and type of connections it

has to other words. Semantic networks constitute a somewhat idealized representation

that abstracts away from real word usage. The model on its own does not specify how
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the representations are learned and the latter are traditionally hand-coded by model-

ers who have to a priori decide which relationships are most relevant in representing

meaning.

The model presented in Fountain and Lapata (2011) is distributional, i.e., it represents

the meaning of words by their patterns of co-occurrence with other words. They also

organize concepts in a semantic network that is not, however, structured hierarchi-

cally. They consider a simpler formulation of semantic networks in which a network

is composed of a graph with edges between word nodes. Such a graph is unipartite:

there is only one type of node, and those nodes can be interconnected freely. Edges

between nodes do not represent subsumption but similarity or relatedness and can be

easily quantified in a distributional framework (words that are similar in meaning will

tend to behave similarly in terms of their distributions across different contexts). Their

model is an incremental version of Chinese Whispers (Biemann, 2006), a randomized

graph-clustering algorithm. The latter takes as input a graph which is constructed from

corpus-based co-occurrence statistics and produces a hard clustering over the nodes in

the graph. Their model treats the tasks of inferring a semantic representation for con-

cepts and their class membership as two separate processes. This allows to experiment

with different ways of initializing the co-occurrence matrix (e.g., from bags of words

or a dependency parsed corpus), however at the expense of cognitive plausibility. It is

unlikely that humans have two entirely separate mechanisms for learning the meaning

of words and their categories. We formulate a more expressive model which captures

word categories and their predictive features in one, unified process.

Bayesian Models Incremental Bayesian category learning was pioneered by An-

derson (1991) who developed a non-parametric model able to induce categories from

abstract stimuli represented by binary features. According to this model, category

learning amounts to Bayesian density estimation, where the number of clusters to be

used in representing a set of objects is selected automatically. Sanborn et al. (2006)

and Sanborn et al. (2010) present a fully Bayesian adaptation of Anderson’s original

model, which yields a better fit with behavioral data. Specifically, borrowing ideas

from nonparametric Bayesian statistics, they propose two algorithms for approximate

inference in this model: Gibbs sampling (a “batch” procedure where density estima-

tion assumes that all data are available at the time of inference) and particle filtering

(where density estimation proceeds incrementally over time, as stimuli become avail-
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able). A separate line of work examines the processes of generalizing and generating

new categories and concepts (Jern and Kemp, 2013; Kemp et al., 2012) which are again

modeled as samples from probability distributions.

In this work, we also present a probabilistic Bayesian model of categorization which is

conceptually similar to Sanborn et al. (2010). However, our model was developed with

(early) language acquisition in mind. They focus on adult categorization and use rather

simplistic categories representing toy-domains. It is therefore not clear whether their

approach generalizes to arbitrary stimuli and data sizes. Moreover, they are primar-

ily interested in how to approximate the intractable ideal solution to the partitioning

problem. Our work differs in two respects: firstly, we are interested in large-scale cat-

egorization. We investigate the question whether it is possible to learn categories from

a large number of observations of concepts covering a wide variety of categories, thus

approaching the scale of the problem that a child is faced with. Secondly, we are in-

terested in learning the representations for real-world, semantic categories of concrete,

observable objects (for example, that a dog is an ANIMAL or that a chair is FURNI-

TURE).

Latent Dirichlet Allocation (LDA; Blei et al. (2003)) is a popular Bayesian model for

discovering latent topics in text. LDA assumes that a document is generated from an

individual mixture over topics, and each topic is characterized by a distribution over

words. LDA learns topics from longer documents whereas we argue that a limited

local context is appropriate for category induction since a target concept’s features

are best represented through its immediately surrounding words. Fountain and Lapata

(2011) further show that LDA cannot be applied effectively to shorter contexts ap-

propriate for category acquisition. From a cognitive point of view, focusing on local

contexts of target concepts approximates limitations of attention and memory faced

by young learners. Finally, it is unclear how to naturally define longer contexts when

the input given to the model consists of streams of child-directed speech. Our model

infers a grouping of words into semantic categories based on the assumption that lo-

cal linguistic context can provide important cues for word meaning and by extension

category membership. In this sense, it is loosely related to Bayesian models of word

sense induction (Brody and Lapata, 2009; Yao and Durme, 2011) which also make use

of short local contexts. However, the above models focus on performance optimiza-

tion and learn in an ideal batch mode, while incorporating various kinds of additional

features such as part of speech tags or syntactic dependencies. In contrast, we develop
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a cognitively plausible (early) language learning model and show that categories can

be acquired purely from linguistic context, as well as in an incremental fashion.

From a modeling perspective, we learn categories using a particle filtering algorithm

(Doucet et al., 2001). As explained in Section 3.3.3, Particle filters are a family of

sequential Monte Carlo algorithms which update the state space of a probabilistic

model with newly encountered information. Particle filters have been previously used

to explain behavioral patterns in several tasks such as associative learning (Daw and

Courville, 2007), change-point detection (Brown and Steyvers, 2009), word segmenta-

tion (Börschinger and Johnson, 2011), and sentence processing (Levy et al., 2009). As

mentioned earlier, Sanborn et al. (2006) also use particle filters for small-scale catego-

rization experiments with artificial stimuli. To the best of our knowledge, we present

the first particle filtering algorithm for large-scale category acquisition from natural

language text.

4.2 Bayesian Natural Language Categorization

We begin by formalizing the general problem of Bayesian categorization and then de-

rive our model as an instance of this formulation. In this framework, the learner is faced

with a partitioning problem, i.e., to group observed concepts into categories based on

their features. We use the term stimuli to denote linguistic observations of concepts

and their features. A common assumption is that concepts with sufficiently similar

features will be assigned to the same category. During this learning process, categories

are not directly observed but are instead inferred from their observable features. Once

categories are established, the learnt category-specific features can be used to predict

the category of new concepts.

More formally, given a stimulus d, a Bayesian model of categorization predicts a la-

tent category zd based on the observable features xd of the stimulus, as well as the

information observed from previously encountered stimuli xd−1, and the latent cat-

egory assignment zd−1. Based on this information, we compute for stimulus d the

probability of being assigned category j:

P(zd = j|xd,zd−1,xd−1) =
P(zd = j|zd−1)×P(xd|zd = j,xd−1,zd−1)

∑
J
j′=1 P(zd = j′|zd−1)×P(xd|zd = j′,xd−1,zd−1)

. (4.1)
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The Bayesian formulation of this problem computes the posterior probability of the

category assignment P(zd = j) based on two factors. The first term of the numerator

in equation (4.1) is the prior probability of selecting category j based on the category

assignments of the previously assigned concept observations. A common choice for

this prior is a ‘rich-get-richer’ scheme: categories which have been chosen frequently

in the past, are more likely to be selected again. The second term of the numerator

in equation (4.1) is the likelihood term, which considers xd , the observed features of

stimulus d, and computes the probability that they were generated from category j.

By assigning each stimulus to exactly one category, the learning process discovers a

partition of stimuli into categories consistent with the observable data. In order to find

the optimal partitioning, it would be necessary to iterate over all possible partitionings

of the data, which is intractable for any data set of non-trivial size. Several approxi-

mation algorithms for this problem have been proposed, one of which, namely particle

filtering, we will describe later in this section.

The model presented above is very general and as such can be applied to many different

types of stimuli and features. For example, Sanborn et al. (2010) (following Medin and

Schaffer 1978) use a small number of artificial stimuli, each with four binary features

(e.g., 1111, 0101, 1010). In another experiment, they use 12 stimuli with continuous

features, varying in brightness and saturation. Other work focusing on natural language

categorization has assumed that abstract cognitive representations of concepts can be

represented as sets of features obtained from norming studies. Table 4.1 (top) provides

examples of concepts and their elicited features.

In our work we learn the semantic representations of concepts from large-scale lin-

guistic corpora without relying on explicit human judgment. In this framework, infor-

mation about the meaning of words can be derived by analyzing the co-occurrences

between words and the contexts in which they occur. Many cognitive models of word

meaning (Landauer and Dumais, 1997; Griffiths et al., 2007b; Lund and Burgess, 1996)

subscribe to this distributional hypothesis which states that a word’s meaning is pre-

dictable from its context (Harris, 1954). By extension, we further assume that a word’s

context is predictive of its category and that category features can be derived from

the linguistic context. Our model (incrementally) learns semantic categories based on

the linguistic features of their context, and can be tested on a large scale. Table 4.1

(bottom) shows examples of the linguistic features we consider for different concepts.
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strawberry grape apple snail dog cat

has_a_taste X X X

contains_seeds X X X

is_edible X X X

can_be_a_pet X X X

is_alive X X X X X X
Fe

at
ur

e
N

or
m

s

eats X X X

strawberry grape apple snail dog cat

ripe X X X

hungry X X X X X X

lemon X X X

owner X X X

bark X

C
on

te
xt

Fe
at

ur
es

shepherd X X

Table 4.1: Concepts and their features for the categories FRUIT and ANIMAL. Features

are shown as feature norms (top) and as context words (bottom).

4.3 A Bayesian Model of Large-scale Incremental Cate-

gory Learning

In this section we present our Bayesian model for large-scale semantic category acqui-

sition from natural language text (BayesCat for short). For now we focus on the com-

putational level (Marr, 1982) of the problem definition of categorization, and present

a model with which we can (in principle) learn semantic categories. In the following

section we turn to the algorithmic dimension of the problem, and introduce two learn-

ing algorithms for our model: a batch algorithm, which learns by repeated iterations

over the entire training data set (Section 4.3.1); and a more cognitively plausible incre-

mental inference algorithm which accumulates information in real time, as stimuli are

observed (Section 4.3.2).

Intuition The input BayesCat receives is natural language text, and its final output

is a set of categories (aka clusters) as discovered from the input stimuli. We use the
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linguistic context of observed concepts as a proxy for their characteristic features, and

assume that concepts with sufficiently similar features are assigned to the same cate-

gory. The model is exposed to linguistic stimuli, each consisting of a target concept t

and a set of context words c from a symmetric window of length n:

[c−n ... c−1 t c1 ... cn]. (4.2)

Each induced category will be characterized by a set of concepts which are members

of the category, as well as a set of category-specific features. We assume a global

distribution over categories θ, from which all stimuli are generated. Each category k

has two associated multinomial distributions over words: (1) a distribution over con-

cepts (i.e., target words) φk and (2) an independently parametrized distribution over

context words ψk. The separation of concepts from context words allows us to learn

features together with category members. We furthermore argue that, while members

of the same category tend to appear in the same contexts, they do not necessarily co-

occur. For example, the concepts parrot and seagull are both members of the category

BIRD, but are rarely mentioned together, however, they frequently occur with the same

features, e.g., they both fly, croak, lay eggs, and so on.

Model Description A graphical overview of the BayesCat model in form of a plate

diagram is shown in Figure 4.1b. Figure 4.1a displays the generative process of the

BayesCat model which proceeds as follows.3 First, we draw parameters θ for a global

distribution over categories from a Dirichlet distribution with parameter α. Then, for

each category k, we draw (1) parameters φk for a category-specific concept distribu-

tion (from a Dirichlet distribution with parameter β), as well as (2) parameters ψk

for a category-specific context word (or feature) distribution (from a separate Dirich-

let distribution parametrized by γ). Using these global parameters, we can generate

stimuli d. First, draw a category zd ∼ Mult(θ). Then, draw a target word from the

category-specific concept distribution wd
t ∼ Mult(φzd); and finally, independently for

each context position i, we draw a context word from the category-specific feature

distribution wd,i
c ∼Mult(ψzd).

The full joint distribution over data and model parameters as defined by our model (see

the independence assumptions in the plate diagram in Figure 4.1b) can be factorized

3We refer to the Dirichlet distribution as Dir and to the Multinomial distribution as Mult.
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(a) Generative story of BayesCat.

Draw distribution over categories θ∼ Dir(α)

for category k do
Draw target word distribution φk ∼ Dir(β)

Draw context word distribution ψk ∼ Dir(γ)

for stimulus d do
Draw category zd ∼Mult(θ)

Draw target word wd
t ∼Mult(φzd)

for context position i = {1...I} do
Draw context word wd,i

c ∼Mult(ψzd)

(b) Plate diagram of BayesCat.

wt

wc

zθ φ

ψ

α β

γ

i
d

k

k

Figure 4.1: Top (a): The generative story of the BayesCat model. Observations (wt

and wc) and latent labels (z) are drawn from Multinomial distributions (Mult). Parame-

ters for the multinomial distributions are drawn from Dirichlet distributions (Dir). Bottom

(b): The plate diagram representation of the BayesCat model. Observed variables

(target concepts and context words) are shown as shaded nodes, white solid nodes

represent the latent variables to be estimated, and fixed hyper-parameters are shown

as white dashed nodes. Plates indicate repetition of the variables they contain with the

subscript indicating the number of repetitions (e.g., the model contains an individual

distribution over concepts φ for each category k).
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as:

P(y,z,θ,φ,ψ;α,β,γ) =

P(θ|α)×
K

∏
k=1

P(φk|β)P(ψk|γ)×
D

∏
d=1

P(zd|θ)P(wd
t |φzd)

I

∏
i=1

P(wd,i
c |ψzd),

(4.3)

where y refers to all observed data, z refers to the hidden category labels, and k,d

and i are indices ranging over categories, stimuli, and context positions, respectively.

The parametrization of our model allows us to further simplify the joint distribution.

Due to the conjugacy of the Dirichlet and Multinomial distribution, we can analyti-

cally integrate over all possible values of the model’s parameter distributions θ,φ and

ψ (see Section 3.2.2 for the technical details). Dirichlet-Multinomial distributions en-

code a “rich-get-richer” scheme: if a category has been frequently assigned to previ-

ously encountered stimuli, it is more likely that it will be observed again. Intuitively,

this triggers learning of multinomial parameters which distribute most of their mass

over few words, i.e., inferring a targeted vocabulary for each individual category. The

simplified posterior distribution is:

P(y,z,θ,φ,ψ;α,β,γ) ∝

∏k Γ(nk +αk)

Γ(∑k nk +αk)
×

K

∏
k=1

∏r Γ(nk
r +βr)

Γ(∑r nk
r +βr)

×
K

∏
k=1

∏s Γ(nk
s + γs)

Γ(∑s nk
s + γs)

,
(4.4)

where r ranges over target concepts, s ranges over context words (or features), and Γ(·)
is the Gamma function. Note that the model parameter distributions do not appear on

the right-hand side of equation (4.4). Instead, the model is represented purely through

occurrence counts of categories nk as well as co-occurrence counts of categories with

observed concepts and features, nk
r and nk

s , respectively. For the interested reader, we

derive this result, in Appendix A.

Having motivated and derived a cognitive model for inferring semantic categories from

natural text, we now turn to the problem of how these categories are actually learnt

(Marr’s (1982) algorithmic level of analysis) and introducing two learning mecha-

nism. Equation (4.3) defines a probability distribution over all possible partitionings

of the concept observations into categories. Exact computation of this density is both

computationally intractable an cognitively implausible. It is unrealistic to assume that

human learners perform optimal inference (Sanborn et al., 2010). Memory limitations

prevent them from enumerating extraordinarily high numbers of hypotheses. Addi-

tionally, they make mistakes during learning, and often revisit past decisions in the
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light of new information. Intuitively, the BayesCat model must approximate the target

posterior density over all possible partitionings of the concept observations.

We now derive two sampling-based approximate learning algorithms for the BayesCat

model, a batch learner (Gibbs sampler; Section 4.3.1), and a cognitively more plausible

incremental learner (particle filter; Section 4.3.2).

4.3.1 Batch Learning

We derive a Gibbs sampler for learning the parameters of the BayesCat model in a

batch fashion. Gibbs sampling (Geman and Geman, 1984) is a Markov chain Monte

Carlo technique for approximating complex joint probability distributions (see Sec-

tion 3.3.2 for a technical introduction). It operates in batch-mode by repeatedly iterat-

ing through all data points (linguistic stimuli in our case) and assigning the currently

sampled document d a category zd conditioned on the current labelings of all other

documents z−d:

zd ∼ P(zd|z−d,W−d;α,β,γ), (4.5)

using equation (4.4) but ignoring information from the currently sampled document in

all co-occurrence counts.

The Gibbs sampler can be seen as an ideal learner, which can access and revise any

relevant information at any time during learning. From a cognitive perspective, this

setting is implausible. Humans do not learn in a “batch” fashion, repeatedly and sys-

tematically revisiting all information available. Instead, they update their beliefs or

knowledge state over time, drawing inferences every time new information arrives.

Category learning is no exception and indeed experimental evidence suggests that both

children and adults learn categories incrementally (Bornstein and Mash, 2010; Diaz

and Ross, 2006).

4.3.2 Incremental Learning

Particle filters are a class of incremental, or sequential, Monte Carlo methods which

can be used to model aspects of the human learning process more naturally. The parti-

cle filter approximates the target posterior density over all possible partitionings of the
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concept observations through a set of samples in an incremental fashion. Each sam-

ple will correspond to one possible categorization of the observed concepts, and each

sample will be individually and incrementally updated with information from newly

observed stimuli. As is the case in human categorization, the computation time of

the updates must stay fixed irrespectively of the number of previously observed con-

cepts. We achieve this by committing to past categorization decisions made by the

learning algorithm, and thus integrate a new concept observations given the category

assignments of all previously encountered concepts (however, we will relax the strict

incrementality assumption in the following section).

In the following section we formally describe our learning algorithm, and illustrate

it schematically using the example in Figure 4.2a. The full incremental algorithm is

displayed in Algorithm 3. A technical introduction to the principles underlying particle

filtering can be found in Section 3.3.3 of this thesis.

4.3.2.1 A Particle Filter for the BayesCat Model

Incremental inference algorithms are designed to update estimates of the target dis-

tribution with new data becoming available over time. Incremental Monte Carlo al-

gorithms in particular propagate a set of N hypotheses, or samples (called particles)

through time and update them with new information. We introduce time into our learn-

ing process by treating the observation of each stimulus as one time point. In the ex-

ample in Figure 4.2a, we show the learning update at time point 4, i.e., after the model

has observed stimuli 1–4. The algorithm performs one iteration over the complete set

of input stimuli. Our algorithm is based on sequential importance sampling (SIS; Gor-

don et al. 1993), where the true target distribution is approximated through a simpler

importance distribution, and the discrepancy between the distributions is counterbal-

anced through a weight (called importance weight) which is assigned to each sample.

A technical introduction to particle filtering and sequential importance sampling can

be found in Section 3.3.3.

During learning, we incrementally approximate the target density, i.e., the probability

distribution over all possible categorizations of all concept observations p(z1:T |y1:T )

through a cascade of local importance distributions p(z1:t |y1:t). At each time t, p is

the distribution over clusterings z1:t of observed concepts y1:t , represented through the

current set of particles. In order to compute the exact posterior distribution, the cat-



4.3. A Bayesian Model of Large-scale Incremental Category Learning 75

Figure 4.2: (a) Visualization of the particle filtering procedure in the BayesCat model

using an example of a 3-particle filter. Each particle corresponds to a clustering of

the observed stimuli up to time t (left), and the collection of weighted particles serves

as the current approximation of the posterior distribution over clusterings (right). The

5 concepts observed by the filter are shown in the tables. We show one update step for

all particles with stimulus 5, and one subsequent resampling and rejuvenation step. In

the resampling step the highest-weight (red) particle is duplicated, replacing the lowest-

weight (green) particle. In the rejuvenation step each particle revisits one previous

categorization decision in light of all available evidence (e.g., the blue particle removes

apple (from stimulus 1) from the {bird, dog} cluster); (b) a zoom into the blue particle

at time t=4 (left) and time t=5 after rejuvenation (right). Each particle consists of a

distribution over categories, and category-specific distributions over target types and

over context types.
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Algorithm 3 The particle filter for the BayesCat model.
1: Initialize particles by randomly partitioning first d stimuli . Initialization

2: Initialize weights wd = 1
N

3: for stimulus t = [d +1 . . .T ] do
4: for particle n = [1 . . .N] do
5: . Particle Updatezt

n ∼ q(z1:t−1
n |y1:t−1)q(zt

n|zt−1
n ,yt)

= p(zt = i|z−t ,W−d;α,β,γ) Equation (4.5)

St
n←(St−1

n ,zt
n)

6: . Weight Updatew̃t
n = wt−1

n ×P(yt |zt−1)

= wt−1
n ×∑

i
p(zt = i|z−t ,W−d;α,β,γ)

7: wt ← normalize(w̃t)

8: if ESS(wt)≤ thresh then . Resampling

9: P (i)←{Mult(wt)}N
i=1

10: wt = 1
N

11: for particle n ∈ P (i) do . Rejuvenation

12: for rejuvenation point o = [1 . . .O] do

do ∼ uni f orm(1 . . . t)

zdo

n ∼ P(zdo

n |zt
n\−do,yt) Equation (4.5)

egorization of observations y1:t−1 would need to be re-computed for each time step

considering all observed evidence. The exact posterior distribution is, however, not

incremental, because the computation time of the re-estimation of the density over all

previous category assignments is not constant in the number of observed concepts. It is

not tractable to sample from the local target distribution, and not cognitively plausible

either since it assumes re-organization of semantic knowledge with every new obser-

vation. Figure 4.2a displays the estimation of the posterior density through weighted

particles (indicated by the size of the circles) on the right-hand side; the current state

of the corresponding particles is shown on the left-hand side.

Following the importance sampling framework, we choose a proposal distribution q(·)
with which we can approximate the local target distribution more efficiently, and which

has a constant computation time with respect to the number of observed concepts. In

particular, we assume that once a concept has been assigned a category, this category
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is fixed:

q(z1:t |y1:t) = q(z1|y1)
t

∏
k=2

q(zk|z1:k−1,y1:k)

= q(z1:t−1|y1:t−1)q(zt |z1:t−1,y1:t)

= q(z1:t−1|y1:t−1)q(zt |zt−1,yt),

(4.6)

Importantly, this distribution depends only on the label assignments in the previous

time step zt−1 since all previous category assignments are fixed and encoded in this

state. This process corresponds to lines 5–6 in Algorithm 3. In the final line of equa-

tion 4.6, the first term corresponds to the distribution over clusterings of the first t−1

observations, as represented by the current set of particles (i.e., the result of the pre-

vious iteration). The second term denotes the probability distribution over categories

for the current input yt , i.e., over all different ways in which the concept can be in-

tegrated into the current samples. We compute this distribution individually for each

particle, sample its category from this distribution, and update the particle state with

the new information. Figure 4.2a illustrates how each particle is updated individually

after observing input stimulus 5.

The remaining question is the definition of the distribution over categories for the new

observation. Importance sampling affords flexibility in selecting the proposal distribu-

tion qt(zt |zt−1,yt). We sample category zt for the current concept observation yt from

its posterior distribution over categories:

qt(zt |zt−1,yt) = p(zt |z1:t−1)p(yt |zt), (4.7)

taking into account prior information about category probability and the features of

the observed concept. We finally weigh each sample n by its importance weight wn

which can be shown to correspond to the predictive likelihood of the current stimu-

lus yt , and the weights are normalized to sum to one (see lines 7–8 in Algorithm 3). A

more detailed explanation of particle filtering can be found in the technical background

Section 3.3.3.

Resampling By repeatedly sampling from local approximations to the target den-

sity, inaccuracies will inevitably accumulate. This phenomenon, called degeneracy,

is a common problem with particle filters, and manifests in highly varying particle

weights. For our model this means that many particles, or sampled categorizations,

will not be representative of the categories present in the data. Ideally, however, a
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learner should focus on “good” hypotheses in order to use its capacities effectively. The

“goodness” of a sample is indicated by its importance weight. A common approach

to counteract accumulating errors, called resampling, is to replace low-weight parti-

cles with copies of high-weight particles based on some pre-determined schedule (see

Section 3.3.3.3 for more information.). This way, memory resources can be allocated

on high-probability particles, individual copies of which can be further propagated.

We incorporate a threshold-based resampling scheme, using the effective sample size

(ESS):

ESS(wt) =

(
1

∑n(wt
n)

2

)
, (4.8)

which is inversely correlated with the variance of the current set of particle weights.

A resampling step is executed whenever the ESS falls below a set threshold. This

threshold-based resampling provides a means of modeling memory limitations based

purely on the learner’s internal state. From a modeling perspective, this provides us

with a statistically sound learning procedure, which is defined purely with respect to

the current state of “confidence” of the learner, without the need to resort to external

cues or heuristics. Figure 4.2a shows one resampling step following the particle up-

dates. The red particle with the highest weight is duplicated and replaces the green

particle with the lowest weight (see the different-sized circles on the right-hand side).

Technically, resampling consists of drawing N times with replacement from a multi-

nomial distribution over particles parametrized by the current set of particle weights.

Weights are re-set to uniform after resampling (see lines 9–11 in Figure 3). The result-

ing set of particles is an empirical estimate of the current approximation, in that the

weights are now implicitly represented in the number of instantiations of the sampled

particles. We use systematic sampling (Cochran, 1977) to obtain a new set of particles

from the multinomial distribution, which has been shown to produce samples with less

variance than simple multinomial sampling (Hol et al., 2006).

Relaxing Strict Incrementality The learning algorithm presented above approxi-

mates the target distribution over categorizations of observed concepts in a strictly

incremental way. In other words, while it simulates human memory restrictions and

uncertainty by learning based on a limited number of current knowledge states, it never

reconsiders past categorization decisions. However, in many linguistic tasks, learn-

ers revisit past decisions (Frazier and Rayner, 1982) and intuitively we would expect
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categories to change based on novel evidence, especially in the early learning phase

(Colunga and Smith, 2005; Landau et al., 1998; Borovsky and Elman, 2006). Children

clearly revise and refine their early hypotheses of the world in light of new information.

We incorporate this intuition into our particle filter, by allowing it to reconsider past

decisions to some extent, while keeping the algorithm incremental and computation

time constant. We employ a technique called rejuvenation (Gilks and Berzuini, 2001).

Specifically, after the resampling step for each particle, we individually reconsider the

category assignment for a fixed number of previously observed concepts (see lines 13–

15 in Figure 3). Aside from being cognitively plausible, rejuvenation also brings a

theoretical advantage: it enhances the representativeness of the sample, by “jiggling”

the resampled particles and thus introduces diversity among descendants of the same

particle. Figure 4.2a illustrates rejuvenation for the bottom set of particles. Each parti-

cle revisits one previous categorization decision (e.g., the blue particle, places concept

observation 1 into a previously empty cluster). Note that the previously identical copies

of the red particle contain distinct clusterings after rejuvenation, such that the sample

space is explored more effectively. See Section 3.3.3.3 for more information.

4.4 Experiment 1: Large-Scale Category Learning

In the following we present a series of experiments assessing the performance of

BayesCat. Our experiments are designed to examine whether the model produces

meaningful categories but also to investigate the learning process itself and its char-

acteristics. In the first experiment (Section 4.4.1) we assess the quality of the semantic

categories induced by our model and compare it against an ideal batch learner and

Fountain and Lapata’s (2011) incremental graph-based model. We continue with two

experiments which explore category acquisition in children using a corpus of child-

directed speech (Sections 4.5.1–4.5.2). Finally, Section 4.5.3 presents a typicality rat-

ing experiment. All our experiments evaluate the categories produced by the models

against gold standard categories created by humans.
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4.4.1 Quality of Learnt Categories

Our first goal was to examine whether any meaningful categories emerge when our

incremental model is trained on a large corpus. We compare BayesCat against a re-

lated graph-based incremental learner, and a batch learning version of our own model.

All models are trained on the British National Corpus (BNC), a 100 million word

collection of samples of written and spoken British English.4 Each model’s result-

ing clustering is compared against a human-produced gold standard. In the following,

we describe how this gold standard was created, discuss how model parameters were

estimated and explain how model output was evaluated.

Data Our model was evaluated based on its clustering of words into semantic cate-

gories and its output was compared against similar clusters elicited from human par-

ticipants. A gold standard set of categories was created by collating the resources

developed by Fountain and Lapata (2010) and Vinson and Vigliocco (2008). Both data

sets contain a classification of (concrete) nouns into (possibly multiple) semantic cat-

egories produced by human participants. Examples from the data set are provided in

Table 4.2. The former data set is an extension of McRae et al.’s (2005) feature norms

with category information. The original feature norms were collected through a major

effort spanning multiple years and involving more than 700 participants. Norms were

collected for a set of 541 target concepts consisting of living (e.g., cow) and non-living

(e.g., blender) things, each corresponding to a single English noun. Concepts were

selected so as to cover a broad range of generally familiar basic level concepts used in

previous studies on semantic memory.

Fountain and Lapata (2010) augmented McRae et al.’s (2005) concepts with category

labels (and typicality ratings). They collected this information using Amazon Me-

chanical Turk, an online labor marketplace which has been used in a wide variety of

elicitation studies and has been shown to be an inexpensive, fast, and (reasonably)

reliable source of non-expert annotation for simple tasks (Snow et al., 2008). Partic-

ipants were presented with 20 randomly selected concepts from the McRae data set,

and asked to write down the superordinate category they thought applied (rather than

select one from a list). Each concept was labeled by ten participants. Based on the set

of collected labels, the concepts were grouped into 41 categories (allowing for multi-

4The British National Corpus, version 3 (BNC XML Edition). 2007. Distributed by Oxford Univer-
sity Computing Services on behalf of the BNC Consortium. URL: http://www.natcorp.ox.ac.uk/
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BUILDING

church, garage, skyscraper, tent, shack, wall, door, basement, house, pyramid, brick,

cathedral, chapel, hut, apartment, cabin, bungalow, stone, barn

VEHICLE

yacht, unicycle, boat, raft, bus, train, bike, trailer, submarine, sled, truck, rocket, jet,

van, subway, tractor, skateboard, trolley, helicopter, buggy, jeep, motorcycle, ship,

canoe, ambulance, sailboat, airplane, limousine, sleigh, taxi, car, scooter, tank.

WEAPON

cannon, gun, machete, rifle, bayonet, harpoon, bazooka, tomahawk, whip, catapult,

sword, revolver, knife, missile, bow, crowbar, shotgun, dagger, tank

Table 4.2: Example categories and their concepts taken from our gold standard.

category membership). The reliability of the annotations was assessed through label-

ing correlation between random splits of the data, and amounts to an average of 0.72

across all categories (ranging from 0.91 (FURNITURE) to 0.13 (STRUCTURE)). Given

the elicitation procedure described above, we assume that the feature norms represent

psychologically salient categories which the cognitive system is in principle capable

of acquiring.

In order to evaluate category acquisition models on a large scale, we further merged

McRae et al.’s (2005) data set with the concepts used in Vinson and Vigliocco (2008).

The latter data set covers concrete basic level objects, event-related objects, and verbs,

however in this work we only used the subset of 169 concrete objects. Category labels

for these objects are provided by the authors and largely overlap with those elicited

in Fountain and Lapata (2010). For this reason, we did not elicit additional category

labels empirically. After removing duplicates, we obtained 42 semantic categories

for 555 nouns. We split this gold standard into a development (70%; 41 categories,

492 nouns) and a test set (30%; 16 categories, 196 nouns).5 The size and nature of this

evaluation data set is in sharp contrast to those used in previous categorization studies

which consist of a small number of artificial concepts.

The input to all models comprises the same set of linguistic stimuli, each of which

5The data set is available from www.frermann.de/data.

www.frermann.de/data
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BNC CHILDES

Stimuli 1.37M 170K

Concepts (target word types) 555 312

Features (context word types) 6,584 2,756

Table 4.3: Number of stimuli, target concepts, and features retrieved from BNC and

CHILDES.

consists of one target word t, surrounded by a symmetric window of n context words

[c−n ... c−1 t c1 ... cn]. The target words are defined by the set of concepts included

in our gold standard. Some corpus statistics are given in Table 4.3 (column BNC).

The corpus was lemmatized and stopwords were removed. Infrequent context words

(occurring less than 800 times) were also eliminated, which leads to a reduction of

context word types from 306,746 to 6,584 (by close to 98%) 6. We used a window of

size n = 5 for stimuli extracted from the BNC.

Model Comparison We optimized the parameters of the incremental BayesCat model

on the development set. We obtained best results with the following parameters α =

0.7,β = 0.1,γ = 0.1. Our model is parametric in the sense that the form of the model

distributions are fixed to be K-multinomial. We set the maximum number of categories

our model can learn to K = 100. However, the number of categories present in the data

is much smaller, and the model reliably converges to using a subset of the 100 cate-

gories. For learning, we use a particle filter with N = 100 particles. We set the ESS

threshold to 0.5 ∗N = 50. After each resampling step we rejuvenate 100 randomly

chosen previous categorization decisions, independently in each resampled particle.

We compare our BayesCat model against Fountain and Lapata’s (2011) incremen-

tal model which adopts a graph-based approach to category learning. Concepts are

represented as vertices in a graph and categories are inferred by grouping together

distributionally similar vertices. The graph is partitioned into categories using an in-

cremental variant of Chinese Whispers (Biemann, 2006), a non-parametric clustering

algorithm (henceforth we refer to this model as CW). Their model implements cate-

gory learning in the following steps. First, a semantic space is learnt — concepts are

6This drastic reduction follows from the fact that word type frequency in natural language follows a
power law distribution, in particular Zipf’s law. This implies that relatively few word types occur with
high frequency and a large number of word types occur with low frequency.
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represented as high-dimensional vectors, where each component corresponds to some

co-occurring contextual element. Next, an undirected weighted graph G = (V,E,φ) is

constructed with vertices V , edges E, and edge weight function φ. Concepts are added

to the graph as vertices. Then, for each possible pair of vertices (vi,v j), their vector

similarity φ(vi,v j) is computed and if the weight exceeds a threshold, an undirected

edge e = (vi,v j) is added to the graph. Finally, the graph serves as input to CW which

produces a hard clustering over the graph vertices. The algorithm iteratively assigns

cluster labels to vertices by greedily choosing the most common label amongst the

neighbors of the vertex being updated. During this process, CW adaptively determines

an appropriate number of clusters to accommodate the data. Both the semantic space,

and the resulting graph are constructed incrementally, using co-occurrence counts col-

lected from sequentially encountered input. Following Fountain and Lapata (2011),

we transform co-occurrence counts into positive PMI values, and encode edge weights

in the graph as cosine similarity values. We trained the CW model on the same set

of stimuli as the BayesCat model, extracted from the BNC using a ±5 context win-

dow centered around the target concept mention. Edge weights must exceed a certain

threshold in order for any two vertices to be clustered together. We tuned this threshold

experimentally on the development data and obtained best performance with t = 5. We

used this value in all our experiments.

The CW model treats semantic category acquisition and semantic knowledge repre-

sentation as two different processes, even though it seems unlikely that humans have

separate mechanisms for learning the meaning of words and their categories. More-

over, in contrast to BayesCat which learns category-specific features together with the

categories, CW does not provide a straightforward way of recovering category-specific

features from the clustered graph. We compared the learning behavior as well as the

output clusters produced by the two models.

We also compared our incremental model against a batch learner which observes all

input data from the start, as described in Section 4.3.1 The batch model (henceforth

Gibbs) differs from the incremental BayesCat model only in its learning strategy and

can thus be viewed as an ideal learner: it has access to all the training data at any

time and can revisit previous categorization decisions systematically. We compare our

incremental learner against an ideal batch learner, in order to investigate whether dif-

ferent learning strategies influence the quality of the estimated categories. Our experi-

ments used the same model parametrizations for Gibbs as for the incremental BayesCat
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model. We run the sampler for 200 iterations without burn-in or lag, and take the state

at the final iteration as our sample.

Method BayesCat produces soft cluster assignments, however, CW returns a set of

hard clusters. In order to compare the two models directly, we transform soft clusters

into hard clusters by assigning each target concept w to its most likely category z:

cat(w) = max
z

P(w|z) ·P(z|w) (4.9)

The output clusters of an unsupervised learner do not have a natural interpretation.

Cluster evaluation in this case involves mapping the induced clusters to a gold stan-

dard and measuring to what extent the two clusterings (induced and gold) agree (Lang

and Lapata, 2011). Purity (pu) measures the extent to which each induced category

contains concepts that share the same gold category. Let G j denote the set of concepts

belonging to the j-th gold category and Ci the set of concepts belonging to the i-th

cluster. Purity is calculated as the member overlap between an induced category and

its mapped gold category. The scores are aggregated across all induced categories i,

and normalized by the total number of category members N:

pu =
1
N ∑

i
max

j
|Ci∩G j| (4.10)

Inversely, collocation (co) measures the extent to which all members of a gold category

are present in an induced category. For each gold category we determine the induced

category with the highest concept overlap and then compute the number of shared

concepts. Overlap scores are aggregated over all gold categories j, and normalized by

the total number of category members N:

co =
1
N ∑

j
max

i
|Ci∩G j| (4.11)

Finally, the harmonic mean of purity and collocation can be used to report a single

measure of clustering quality. If β is greater than 1, purity is weighted more strongly

in the calculation, if β is less than 1, collocation is weighted more strongly:

Fβ =
(1+β) · pu · co
(β · pu)+ co

(4.12)

In addition to purity and collocation and their harmonic mean, we report results us-

ing a fuzzy variant of the well-known V-Measure (Utt et al., 2014; Rosenberg and
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Hirschberg, 2007) which is more appropriate for evaluating model output against the

soft gold standard clusters.7 V-Measure (VM) is an information-theoretic measure,

designed to be analogous to F-measure, in that it is defined as the weighted harmonic

means of two values, homogeneity (VH, the precision analogue) and completeness

(VC, the recall analogue):

VH = 1− H(G|C)

H(G)
(4.13)

VC = 1− H(C|G)

H(C)
(4.14)

VM = 1− (1+β) ·V H ·VC
(β ·V H)+VC

(4.15)

where H(·) is the entropy function; H(C|G) denotes the conditional entropy of C

given G and quantifies the amount of additional information contained in C with re-

spect to C. The various entropy values involve the estimation of the joint probability

of induced class C and gold standard class G:

p̂(C,G) =
µ(C∩G)

N
(4.16)

The fuzzy V-Measure distributes the mass of any object which is member of more

than one cluster equally over all its clusters. Then, µ(C∩G) is the total mass of the

objects in the data shared by C and G and N the total mass of the clustering. As a

result, N will be equal to the total number of objects to be clustered, which is trivially

the case when comparing hard clusterings (but not for soft clusterings when the mass

distribution step of the fuzzy V-measure is omitted, as in standard V-measure). Fuzzy

VM thus allows us to directly evaluate the output of our models against our soft gold

standard clustering, avoiding biases through the normalization constant, as implied in

the standard V-Measure.

Results Table 4.4 reports results on the performance of our incremental BayesCat

model (PF), its batch version (Gibbs), and Chinese Whispers (CW), all trained on

the BNC. We present results on the test set (16 categories, 196 nouns) and the larger

development set (41 categories, 492 nouns). We quantify model performance using

7Some categories such as ANIMAL and FOOD, or FRUIT and FOOD naturally share concepts in our
gold standard.
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Development Set
pu co F0.5 VH VC VM

Random 0.24 0.05 0.13 0.39 0.30 0.34

PF 0.59 0.31 0.50 0.47 0.42 0.44

Gibbs 0.63 0.24 0.47 0.51 0.43 0.47
CW 0.35 0.55 0.37 0.18 0.32 0.23

Test Set
pu co F0.5 VH VC VM

Random 0.52 0.11 0.30 0.67 0.39 0.50

PF 0.69 0.42 0.61 0.68 0.50 0.58

Gibbs 0.76 0.28 0.57 0.78 0.50 0.61
CW 0.40 0.55 0.42 0.26 0.36 0.30

Table 4.4: Performance of the particle filter (PF), its Gibbs sampling variant (Gibbs),

Chinese Whispers (CW), and a random baseline (Random) on the British National Cor-

pus (BNC). Boldface highlights the best performing model under each evaluation metric.

purity (pu) collocation (co), and their harmonic mean (with β set to 0.5) as well as the

fuzzy version of V-measure (VM) and its homogeneity (VH) and completeness (VC)

components. All scores are averaged over 10 runs.

In addition, we report performance on the same metrics for a baseline which assigns

concepts to K categories at random (Random). The score reflects average performance

of 10 random categorizations. K is set to the same value for all systems. Note that the

V-measure scores for the baseline are surprisingly high, often beating CW. V-Measure

is known to favor sparse clusterings of few gold instances (e.g., Vlachos et al. (2009);

Rosenberg and Hirschberg (2007)). Throughout our experiments we set K to a high

value (higher than the known number of categories in the gold standard), and set hy-

perparameters such that models are encouraged to induce the number of categories by

themselves as a subset of K. A random baseline will populate all K categories (there’s

no incentive to leave some unpopulated) and thus produce a large number of cate-

gories with relatively few members each. Thus, random categorizations in this setting

are quite precise, but recall will be low. V-measure has been shown to score such sparse

solutions favorably (even if they are rated worse by humans), and the effect becomes

stronger with fewer gold standard instances relative to K as is the case in many of our
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experiments.8

Comparison of the two incremental models, namely PF and CW, shows that our model

outperforms CW under most evaluation metrics both on the test and development set.

Under the VM evaluation metric, PF consistently outperforms CW. Gibbs, the non-

incremental model version of our model, performs best overall. This is not entirely

surprising. When BayesCat learns in batch mode using a Gibbs sampler, it has access

to the entire training data at any time and is able to systematically revise previous

decisions. This puts the incremental variant at a disadvantage since the particle filter

encounters the data piecemeal and only periodically resamples previously seen stimuli.

Nevertheless, as shown in Table 4.4, PF’s performance is close to Gibbs using VM.

Although the general pattern of results is the same on the development and test sets,

absolute scores for all systems are higher on the test set. This is expected, since the

latter contains fewer categories with a smaller number of concepts and more accurate

clusterings can be (on average) achieved more easily.

Table 4.5 shows example categories learnt by the incremental BayesCat model. Each

induced category is characterized by a set of concepts (top), as well as a set of features

representing different aspects of the meaning of the category (bottom). For example,

train, bus, and boat are members of the category VEHICLE. Induced features for this

category refer to users of vehicles (e.g., passenger, driver) and the actions they perform

on them (e.g., drive, ride, park, travel, arrive) as well as locations where vehicles are

found (e.g., road, railway, station). Another category the model discovers corresponds

to BUILDING with members such as house, cottage, skyscraper. Some of the features

relating to buildings also refer to their location (e.g., city, street, village, north ), archi-

tectural style (e.g., modern, ancient), and material (e.g., stone).

In addition to the final categories produced by the models, we are interested in their

learning behavior. Figures 4.3 and 4.4 show the learning curves for the two incremen-

tal models, PF and CW. The learning behavior of the CW algorithm does not resemble

a steady learning curve. This can can be explained by the fact that categories are

built based on co-occurrence counts of target- and context words. With an increasing

number of observations, these counts become less distinctive between target concepts.

Inspection of the output of the CW algorithm, reveals that it induces one very big cat-

8Technically this is the case because the distribution over gold classes within each induced cluster
becomes peakier (precision gets better), while the distribution over induced clusters for each gold class
does not change as drastically (recall decreases at a slower rate). This has been noted repeatedly (e.g.,
Rosenberg and Hirschberg (2007); Vlachos et al. (2009); Reichart and Rappoport (2009)).
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BUILDING

house, building, wall, stone, bridge, cottage, gate, brick, inn,marble, hut, corn, pier,

cellar, basement, canary, skyscraper, beehive

house, building, build, street, town, century, village, stone, garden, city, london, live,

centre, modern, hall, family, site, design, ancient, north, tower, bridge, mill, museum

VEHICLE

train, bus, boat, wheel, van, truck, taxi, helicopter, garage, wagon, fence, bicycle, shed,

trailer, cabin, tractor, cart, jeep, trolley, motorcycle, subway, escalator, airplane

car, road, drive, train, park, station, driver, bus, hour, line, fire, mile, vehicle, engine,

passenger, boat, railway, travel, speed, arrive, track, traffic, route, yard, ride, steal

WEAPON

bomb, crown, knife, ambulance, bullet, shotgun, grenade, machete

police, court, home, hospital, die, kill, yesterday, attack, death, wife, injury, charge,

officer, murder, shoot, suffer, arrest, victim, accident, parent, damage, injure, trial

INSTRUMENT

guitar, rock, piano, drum, violin, flute, clarinet, trumpet, cello, stereo, trombone, harp,

harpsichord, rocker, accordion, saxophone, tuba, baton, bagpipe, harmonica

play, music, guitar, sound, band, bass, song, piano, instrument, sing, album, string,

pop, drum, tune, violin, orchestra, dance, recording, solo, musical, performance, flute,

mozart

Table 4.5: Examples of categories learnt from the BNC with the incremental BayesCat

model. Category concepts (upper row) are shown together with their most likely fea-

tures (lower row).

egory, comprising almost all of the target concepts, and a few rather small, but mean-

ingful categories. On the contrary, the learning curves produced by the incremental

BayesCat model show steady improvement of the acquired categories over time.
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Figure 4.3: Learning curves for PF and CW on the BNC using (a) purity, (b) collocation,

and (c) F0.5.
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Figure 4.4: Learning curves for PF and CW on the BNC using (fuzzy) homogeneity

(a), completeness (b), and V-measure (c).
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4.4.2 Discussion

In this experiment, we performed a large-scale comparison among three models of

natural language categorization. The incremental BayesCat model performs compa-

rably to a batch version of the same model, showing a slightly worse performance.

This seems to indicate that the Gibbs sampler provides a better fit to the cognitive gold

standard and is to be preferred over the incremental learner. The learning process of

the Gibbs sampler is, however, not cognitively plausible. While the latter is an ideal

learner, with access to all data points at any time, and the ability to revise decisions sys-

tematically, it does not have a significant advantage over our incremental model. The

Gibbs sampler can explore the search space more exhaustively than the incremental

learner and can draw more accurate conclusions. Incremental learning highly depends

on sufficient training data, and one would anticipate the particle filter’s performance to

increase with more observations.

Overall, the competitive performance of the particle filter is an encouraging result un-

derlining the efficiency of the incremental learning paradigm as a basic characteristic

of human cognitive behavior. Previous work (Fearnhead, 2004) has shown that Particle

Filters outperform Gibbs samplers in Bayesian mixture models similar to the one pre-

sented here. Intuitively, the particle filter estimates a distribution over categorizations

by means of its N ≥ 1 incrementally constructed particles, or samples, which explore

the probability space independently and simultaneously. A Gibbs sampler produces

samples from a distribution by moving between different (high-probability) regions.

This can be a very slow process, especially with many hidden variables involved, so

that in practice a point estimate of the posterior distribution is often obtained.

We furthermore showed that the Bayesian models outperform a graph-based model

of category acquisition. The categorizations learnt by CW reliably consist of one big

category, comprising the vast majority of concepts, and very few small categories. The

reported collocation and F0.5 scores for CW are therefore misleadingly high: one large

category results in a very high collocation score, while cluster purity remains very low

throughout (see Figure 4.3a). For the incremental BayesCat model, however, the purity

of categories improves constantly as well as well their completeness (see Figures 4.3a

and 4.3b). The fuzzy V-measure does not overestimate CW’s completeness score, and

thus lends itself as a more suitable evaluation metric (see Figure 4.4).

In addition to its superior performance, we argue that BayesCat is also more cogni-
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tively plausible compared to CW. Firstly, on account of its architecture all information

is represented in the same space as probability distributions over words and categories.

In contrast, CW represents information as a co-occurrence matrix which needs to be

transformed into a graph in order to learn categories. Secondly, the BayesCat model

naturally induces category features during the process of category learning. Since fea-

tures have been established as a good proxy for category representations in human cog-

nition, it is inevitable that these representations evolve and change jointly while form-

ing categories. CW only considers features in its first representation, the co-occurrence

matrix, and there is no natural way of recovering category-specific features from the

graph after categories have been learnt. From a cognitive point of view this separation

is implausible. Experimental studies show that category and feature learning mutu-

ally influence each other (Goldstone et al., 2001; Schyns and Rodet, 1997): concepts

are categorized based on their features, and the perception of features is influenced by

already established categories. Like categories, features also evolve over time.

4.5 Experiment 2: Child Category Acquisition

The primary goal of the preceding experiment was to explore how effectively our

model captures large-scale category information. Of equal interest, however, is model-

ing children’s performance on an acquisition task — determining whether the linguistic

input to which children are exposed enables learning of high-level semantic categories

such as those seen in experiment 1. To answer this question, we applied our incremen-

tal model to a corpus of child-directed language and evaluated the resulting categories

against the gold standard clusters used previously.

4.5.1 Quality of Learnt Categories

Data The CHILDES corpus (MacWhinney, 2000) was used to construct training

stimuli for our model. CHILDES consists of a large number of transcripts in a multi-

tude of languages, each recording a free-form interactive session between a child and

one or more adults (parents); we used the XML portion of the corpus, consisting of

American and British English transcripts.9 All child produced utterances were ex-

cluded from the final set of stimuli. We extracted 170,000 child-directed stimuli which
9http://childes.psy.cmu.edu/data-xml/.
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pu co F0.5 VH VC VM

Random 0.29 0.05 0.16 0.46 0.35 0.40

PF 0.62 0.21 0.45 0.50 0.42 0.45

Gibbs 0.74 0.19 0.47 0.59 0.46 0.51
CW 0.39 0.54 0.41 0.22 0.37 0.27

Table 4.6: Performance of the Particle Filter (PF), its Gibbs-based variant (Gibbs), in-

cremental Chinese Whispers (CW), and a random baseline (Random) on the CHILDES

corpus. Boldface highlights the best performing model under each evaluation metric.

we grouped according to the age of the child the speech was directed at.10 The data was

presented to the models in chronological order. Details about the size of CHILDES are

provided in Table 4.3.

The corpus was lemmatized and stopwords were removed. Some concepts in the gold

standard are very specialized and occur very infrequently or not at all in CHILDES. We

only extracted stimuli containing target concepts occurring 50 times or more within the

corpus. Analogously, we filtered low-frequency context words with the same thresh-

old (leading to a reduction of context word types from 24,008 to 2,756 (by 89%)).

Compared to the models trained on the BNC, we used a smaller context window size

of n = 2. Child-directed utterances in CHILDES are relatively short and thus a small

context window is necessary to capture linguistic features relevant to the meaning of

the target concept.

The hyper-parameters of the BayesCat model were optimized on the BNC corpus (de-

velopment set). We did not re-tune model parameters for CHILDES, and thus used the

entire gold standard for evaluation (42 categories, 312 concepts). Model performance

was assessed similarly to Simulation 1 using purity, collocation and their harmonic

mean as well as the analogous information theoretic measures of homogeneity, com-

pleteness, and V-measure.

Results Table 4.6 presents our results on the CHILDES corpus. Again, we com-

pare our incremental BayesCat model using a particle filter (PF), a batch version of

the same model (Gibbs), incremental Chinese Whispers (CW), and a random baseline

(Random). Please refer to Section 4.4.1 (page 86) for an explanation of the baseline

10Stimuli were binned in intervals of six months.
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CLOTHES

hat, shirt, dress, pant, trouser, slipper, coat, suit, vest, jacket, glove, scarf, bow, tie

hat, wear, shirt, blue, daddy, color, dress, yellow, pant, slipper, coat, vest, got, scarf,

short, button, clothes, bow, change, glove, cold, lovely, pretty, party, warm, suit, pocket

BODY PARTS

head, eye, nose, mouth, leg, tongue, chin, lip, shoulder

your, my, eye, nose, head, mouth, hurt, bump, pull, bite, blow, funny, silly, kiss, careful,

tongue, chin, sore, ah, tickle, hard, touch, hole, fell, cry, matter, tire, body, shoulder

FRUIT

apple, cup, orange, strawberry, pear, plum, grape, banana, peach, saucer, lemon, rasp-

berry, mug

eat, apple, hungry, cup, pear, orange, strawberry, grape, banana, green, wednesday,

thursday, tuesday, fruit, plum, peach, monday, friday, peel, saucer, lemon, saturday

VEHICLE

car, train, truck, bridge, ambulance, van, tractor, crane, garage, trailer, taxi

car, oh, train, truck, thomas, drive, red, police, driver, engine, track, bridge, race,

happen, people, ambulance, choo, park, road, station, mean, digger, saw, carry, trailer

Table 4.7: Examples of categories learnt from the CHILDES corpus with the incremen-

tal BayesCat model. Category concepts (upper row) are shown together with their most

likely features (lower row).

and its misleadingly high V-measure scores. All scores are averaged over 10 runs. The

results are broadly comparable to those obtained from the BNC. Again, we observe

that Gibbs performs overall best, however, the incremental model is only slightly less

accurate while being more cognitively plausible. Our model outperforms CW under

most evaluation metrics. Examples of the semantic categories induced by BayesCat

are shown in Table 4.7.

Figures 4.5 and 4.6 show how the clusterings evolve over time for the two incremental

models (PF and CW). Again, CW does not show a meaningful learning curve, un-

der any measure. The completeness of clusters increases over time, however, at the
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Figure 4.5: Learning curves for PF and CW on the CHILDES corpus using (a) purity,

(b) collocation, and (c) F0.5.
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Figure 4.6: Learning curves for PF and CW on the CHILDES corpus using (fuzzy) (a)

homogeneity, (b) completeness, (c) and V-measure.
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Figure 4.7: Emergence of selected categories over time for the incremental BayesCat

model on the CHILDES corpus.

expense of purity. This effectively means that CW tends to learn one very big clus-

ter comprising of the majority of target concepts. PF, on the other hand, shows clear

learning curves across metrics, with increasingly clean (Figures 4.5(a) and 4.6(a)) and

complete clusters (Figures 4.5(b) and 4.6(b)).

In addition to our quantitative evaluation against a gold standard, we investigated the

learning process more qualitatively by inspecting the emergence of individual cate-

gories over time. Figure 4.7 shows how the categories BODYPARTS, FOOD, FURNI-

TURE, and WEAPON develop in the course of 66 months. We can see that the category

BODYPARTS emerges earliest and is acquired with high quality. The same is true for

the category CLOTHES (not shown in the figure to avoid clutter). Slightly later, the

categories FOOD, VEHICLES (also not shown), and FURNITURE evolve. Categories

like, WEAPONS, however, are not acquired from the CHILDES corpus, presumably

because care takers rarely talk about or use concepts from this category in the presence

of young children. In contrast, the WEAPONS category is acquired from the BNC (see

Table 4.5), which, again, emphasizes the ability of our model to adapt to and learn

from empirical data.
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4.5.2 Analysis of Memory Constraints

In this experiment we delve deeper into our incremental inference algorithm and its

appropriateness for cognitive learning. While humans are generally very successful

learners, their memory and computing power is clearly constrained. Particle filters

provide us with a flexible way for investigating memory constraints. The number of

particles, or hypotheses, available to the filter during learning directly correlates with

its memory usage. We expect that, while humans do not have the means to enter-

tain an exceeding number of hypotheses at any time, constraining the learner to one

hypothesis will have a negative impact on the learning outcome. A second indicator

of memory usage is rejuvenation, the extent to which past categorization decisions

are being re-considered in the light of new evidence. Rejuvenation in the BayesCat

model is tightly coupled with resampling, replacing low-probability particles with

high-probability ones, which is yet another an indicator of cognitive load. Resam-

pling (and rejuvenation) is driven by a learner-internal state of “confidence”, where the

model state is re-considered whenever the learner falls below a confidence threshold

about earlier categorization decisions in the light of new evidence. A learner’s con-

fidence w.r.t. to the learnt categorization should increase over time, so that revisions

of the model state occur less frequently. To summarize, in this set of experiments, we

investigate two questions: (1) How do the number of particles and the extent of rejuve-

nation influence the learning process and the quality of the learnt categorization; and

(2) how does the extent of resampling evolve over time.

Method We compare particle filters with different numbers of particles n, where

n ∈ {1,5,20,50,100}. The number of particles is the only varying experimental vari-

able, and the particle filters are set up as described in the previous experiments. Re-

sampling takes place if the ESS falls below a pre-specified threshold; rejuvenation (of

100 stimuli) occurs after every resampling step. For the sake of brevity, we present

results on CHILDES only, noting that a very similar picture emerges on the BNC.

The training corpus used in this set of experiments is identical to the one used in the

category quality evaluation in the previous section.

We compare the performance of the particle filters using two different metrics. First,

we report learning curves based on model log-likelihood. The log-likelihood is a com-

mon model-internal metric used for measuring convergence, even though it does not
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necessarily correlate with the usefulness or interpretability of the estimated solution

(Chang et al., 2009). A higher log-likelihood indicates a better model. In order to

directly measure the quality of the categorizations induced by the particle filters, we

additionally report the F0.5 measure. Moreover, we are interested in teasing apart how

the number of particles and rejuvenation influence the learning behavior of our model.

To this end, we compare particle filters with differing numbers of particles, but with

rejuvenation disabled.

Results Figures 4.8a and 4.8b show the log-likelihood-based learning curve pro-

duced for particle filters with a varying number of particles. While the shape of the

curve is very similar across particle filters, a substantial improvement from the one-

particle filter to multiple-particle filters can be observed. However, the improvement

decreases with more particles, although a slight advantage is still observable. A very

similar picture emerges for the learning curves based on category quality (Figure 4.8c).

The categorizations inferred by the one-particle filter are less accurate than those in-

ferred by multiple-particle filters. This suggests that the one-particle filter found a

local maximum, from which it could not escape. The advantage of the Gibbs sampler

as an ideal learner becomes apparent with the log-likelihood metric (see the red point

Figure 4.8a). The BayesCat model using Gibbs sampling achieves significantly better

log-likelihood scores compared to the incremental model. In general, we see an ini-

tial improvement in the learning curve, but a subsequent drop which is caused by the

increasing number of input stimuli which need to be integrated into a coherent catego-

rization. The log-likelihood flattens out towards the end of the learning curve. While

ideally it should eventually improve, we suspect that the size of the stimuli set used in

this experiment was too small.

Figure 4.9 compares the learning curves for different particle filters with rejuvenation

disabled. Across filters and evaluation metrics a clear decrease in performance is ob-

served, which is unsurprising given that the filters now are bound to categorization

decisions, and unable to revise past decisions in the light of new experience. It is still

evident, however to a lesser extent, that the one-particle filter performs worse com-

pared to filters with more than one particle. Especially in the early learning phase, the

ability to explore multiple hypotheses in parallel is advantageous (see Figure 4.9b).

Figure 4.10 illustrates the resampling behavior of the particle filters. On the one hand,

we observe that filters with more particles tend to resample more frequently, i.e., the
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Figure 4.8: Learning curve for the BayesCat model on CHILDES with varying number

of particles. Model log-likelihood curve (a), model log-likelihood curve for the early

learning phase (b), and F0.5 learning curve (c).
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Figure 4.10: Resampling behavior of the BayesCat model learnt with a varying number

of particles. Points correspond to executed resampling steps at time x.

weights of the particles tend to diverge more with an increasing number of particles.

On the other hand, across different filters resampling frequency decreases over time,

confirming our intuition that a learner’s knowledge state should become increasingly

confident over time, and reconsiderations of past decisions decrease in frequency.

4.5.3 Typicality Rating

An important finding in the study of natural language concepts is that categories show

graded category-membership structure. For example, humans generally judge a trout

to be a better example of the category FISH than eel. In the same way, an apple intu-

itively seems to be a better example of the category FRUIT than olives. Several experi-

mental studies underline the pervasiveness of typicality (or “goodness of example”) in

a wide variety of cognitive tasks such as priming (Rosch, 1977), sentence verification

(McCloskey and Clucksberg, 1979), and inductive reasoning (Rips, 1975). Because of

its importance, typicality is also an evaluation criterion for models of categorization

and concept representation. Any such model should be able to give an account of the

graded category structure and correctly predict differences in the typicality of category

members.

We therefore assessed our model on a typicality rating task (Voorspoels et al., 2008).

In this task, the model is presented with concepts of a category and must predict the

degree to which the concepts are typical amongst members of that category.
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Method Previous work on semantic categorization has shown that exemplar models

perform consistently better compared to prototypes across a broad range of linguistic

tasks (Voorspoels et al., 2008; Fountain and Lapata, 2010; Storms et al., 2000). This

finding is also in line with studies involving artificial stimuli (e.g., Nosofsky 1992).

For the typicality rating task we therefore adopted an exemplar-based model which

is broadly similar to the generalized context model (Nosofsky, 1984, 1986). In this

model, a measure of the typicality of a concept is derived by summing the similarity of

that concept to all concepts in the category. More formally, the typicality of concept w

for category G is given by:

TG(w) = ∑
v∈G

ηw,v (4.17)

where ηw,v is the similarity of concept w to concept v, with v also belonging to cate-

gory G. The similarity function ηw,v can vary depending on how concepts and cate-

gories are represented (e.g., spatially or probabilistically). Within our Bayesian frame-

work it is relatively straightforward to specify a probabilistic quantity that corresponds

to the strength of association between w and v (Griffiths et al., 2007b):

ηw,v = P(v|w) = ∑
k

P(v|k)P(k|w)

= ∑
k

P(v|k)P(w|k)P(k)
P(w)

(4.18)

Here the probability of a category given concept w and the probability of concept v

given that category are averaged across all categories k.

In this set of experiments, we compared BayesCat against a simple co-occurrence

based model, essentially identical to the semantic space used as input to CW. In this

space each target concept is represented as a vector with dimensions corresponding to

its co-occurring context elements. As in previous experiments, we transformed raw co-

occurrence counts into PMI values. A typicality value for each member of a category

was computed using (4.17) and summing the cosine similarity of the concept vector−→w
to the all other vectors representing its co-members −→v :

ηw,v = cos
(−→w ,−→v

)
=
−→w ·−→v
|−→w ||−→v |

(4.19)

Our experiments used the data set produced by Fountain and Lapata (2010) who elicited

typicality ratings11 (and category labels) for all concepts contained in the feature norms

11Publicly available from http://homepages.inf.ed.ac.uk/s0897549/data/.

http://homepages.inf.ed.ac.uk/s0897549/data/
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Figure 4.11: Rank correlations (Spearman’s rho) between the gold typicality ranking

and the model produced rankings over the set of all gold standard categories.

of McRae et al. (2005). In the evaluation, we present the models with the set of gold

members of each gold category, and compare the rankings produced by the models with

the gold typicality ranking elicited from humans. We report Spearman’s ρ correlation

co-efficients for the global ranking across all categories in this data set. We present

results on the CHILDES corpus (41 categories, 689 concept-category pairs) and the

BNC (41 categories, 1,226 concept-category pairs). Typicality ratings were produced

with the incremental variant of the BayesCat model trained with 100 particles. Our

results are averaged over 10 runs. The co-occurrence based model is deterministic,

hence we only report one run for that model.

Results Our results are summarized in Figure 4.11 which illustrates model perfor-

mance (as measured by Spearman’s rho) on the BNC and CHILDES. The incremental

BayesCat model is consistently better at predicting typicality ratings compared to the

simpler co-occurrence based model. All correlation coefficients in Figure 4.11 are

statistically significant (p < 0.01). We should also point out that the typicality rating

task is generally difficult even for humans. Fountain and Lapata (2010) measured inter-

subject agreement in their elicitation study to 0.64. BayesCat fits the experimental data

better when trained on the BNC. This is not unexpected since the BNC is much larger

than CHILDES by a factor of almost 10. Table 4.8 shows some qualitative examples

of concepts which BayesCat rated as most typical/atypical for a particular category.
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category most typical concepts least typical concepts

FOOD cake, bread∗, strawberry, cheese owl∗, lobster, snail∗, deer∗

ANIMAL elephant, horse, cow∗, duck bat, pickle, chipmunk, tuna∗

CLOTHING shirt∗, shoe, sock, dress∗ necklace∗, cap, cape, hose∗

VEHICLE car, train∗, truck∗, bus∗ ship, tank, motorcycle, trolley

category most typical concepts least typical concepts

FOOD cheese, bread∗, cake, potato honeydew, blueberry, eggplant,

zucchini

ANIMAL dog, bear, horse, cat∗ chipmunk∗, chickadee, bluejay,

groundhog

CLOTHING dress∗, shirt∗, shoe, jacket nightgown, mitten, earmuff, paja-

mas

VEHICLE car, train∗, bus∗, ship surfboard∗, sled∗, sleigh, unicycle

Table 4.8: Qualitative examples of typicality judgments as predicted from the incremen-

tal BayesCat model trained on CHILDES (top) and the BNC (bottom). The four most

typical concepts, and the four least typical concepts are displayed for selected cate-

gories. Superscript ∗ indicates whether the concept was deemed highly typical/atypical

in Fountain and Lapata’s (2010) elicitation study.

4.5.4 Discussion

The preceding series of experiments investigated category learnablility from a corpus

of child-directed language and showed that meaningful categories emerged from the

BayesCat model. Compared to our large-scale experiments on the BNC, our model

was presented with a smaller amount of stimuli, and yet was able to recover semantic

categories without any corpus specific optimization. This highlights the robustness

of our model with respect to the chosen hyper-parameters or training corpus. Note,

however, that the runtime of the incremental filter is linear in the number of input

stimuli, and thus is efficiently applicable to data sets of increasing size.

The qualitative examples of the categories and features learnt by BayesCat (Table 4.7)

demonstrate that the categories and their associated features are coherent and easily

interpretable. Note that concepts and features are not clearly separated: frequent mem-

bers of a category also appear in its feature set. We do not treat concepts and their

features differently. From a cognitive point of view this is plausible: concepts of the
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same category can be co-observed (e.g., one may wear a hat and coat or eat an apple

and a banana) which seems like a useful signal in category learning.

Beyond the quality of learnt categories, our experiments also analyzed the effect of

memory resources on the learning behavior of the incremental BayesCat model (Sec-

tion 4.5.2). We examined the effect of the number of particles available to the particle

filters, as well as the effect of rejuvenation.

Across experimental settings, we showed that the one-particle filter is outperformed

by filters which explore multiple hypotheses simultaneously. Our results thus suggest

that having access to one hypothesis at a time, during learning, is not sufficient for

our category acquisition task. However, we also observe that an increased number of

particles does not necessarily lead to increased performance. A filter with five particles

is able to substantially outperform a filter with one particle, while not being much

worse than a filter with 100 particles. In the literature it has been argued, following the

singularity principle, that humans have a strong tendency to consider only the one most

likely category in reasoning at any time (Evans, 2007; Murphy et al., 2012), which is at

odds with our observations above. However, we point out that BayesCat is a model of

child category acquisition whereas the research investigates categorization of objects

in lab experiments with adult participants. It would be interesting investigate whether

the singularity principle holds in a learning setting similar to ours.

We further showed that our model resembles human learning in the sense that the

learner’s uncertainty decreases over time, as measured by the frequency of resampling.

Intuitively, would expect that early state representations in human learning are more

uncertain than later ones. With more observed stimuli, the learnt knowledge should

become more stable, and revisions of the knowledge state should occur less frequently.

We observe this behavior in our particle filters as well: in the initial learning phase

resampling is very frequent, but the frequency decreases over time (cf., Figure 4.10).

Our final set of experiments (Section 4.5.3) compared two models in their ability to

rank concepts with respect to typicality, against a human created gold standard. We

showed that our model successfully captured the typicality of concepts within a given

category. The typicality ratings produced by BayesCat (Table 4.8) largely correspond

to human intuitions. We should also point out that this is a large-scale study over

hundreds of concepts. Previous work on the same task has only used a few dozens

(Storms et al., 2000; Voorspoels et al., 2008; Connel and Ramscar, 2001). BayesCat
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outperforms a simpler vector space model which is nonetheless non-incremental. Our

model learns statistical information about observed concepts incrementally, whereas

the vector spaced model has all information available at once for constructing concept

representations. BayesCat exhibits better typicality performance, which suggests that

(a) the learnt concept representations are meaningful and (b) the incremental learn-

ing procedure does not put the model at disadvantage. Finally, we should note that

BayesCat was not optimized or tuned for the typicality rating task in any way. Typi-

cality follows naturally from the model structure without any additional assumptions

on the task or learning strategy.

A common problem for models based on co-occurrence patterns in text (like BayesCat)

is the fact that word type distributions follow a power law, and are consequently highly

skewed. The induced information from raw text tends to be dominated by function

words which occur with high frequency, but do not carry meaning themselves. While

sophisticated priors can help alleviate the problem (Wallach et al., 2009), a more com-

mon strategy is to filter very high-frequent and low frequent words from the input to

reduce the ‘skewness’ of the data. We apply this filtering to all input corpora used in

experiments in this thesis. Without input filtering, we would expect the interpretability

and relevance of the learnt categories and, in particular, features to decrease. Espe-

cially the incrementally updated representations induced by the particle filter would

be likely dominated by high-frequency words early on. In addition, vocabulary fil-

tering reduces the dimensionality of some of the model distributions, which ensures

tractability of learning and inference. From a cognitive point of view, input filtering

can be interpreted as an approximation of attention: through information beyond pure

speech, such as prosody or gaze as well as cross-situational experience, children’s at-

tention is guided to the relevant words and objects in their environment (Dominey and

Dodane, 2004), i.e., meaning-bearing words in the linguistic input.

4.6 Summary

In this chapter we have presented BayesCat, a Bayesian model of category acquisi-

tion. Our model learns to group linguistic concepts into categories as well as their

features (i.e., context words associated with them). Category learning is performed

incrementally, using a particle filtering algorithm which is a natural choice for model-

ing sequential aspects of language learning. Our experiments were designed to answer
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several questions with respect to the robustness of the proposed model, the quality

of its output, and adopted learning mechanism. (1) How do the induced categories

fare against gold standard categories? (2) Are there performance differences between

BayesCat and Chinese Whispers, given that the two models adopt distinct mechanisms

for representing lexical meaning and learning semantic categories? (3) Does our learn-

ing mechanism predict human performance and is it cognitively plausible? We now

summarize our findings in the light of the above questions.

Firstly, we observe that our incremental model learns plausible linguistic categories

when compared against the gold standard. Secondly, these categories are qualita-

tively better when evaluated against Chinese Whispers, a closely related graph-based

incremental algorithm. Thirdly, analysis of the model’s output shows that it simulates

category learning in two important ways, it consistently improves over time and can

additionally acquire category features. Overall, our model has a more cognitively plau-

sible learning mechanism compared to CW, and is more expressive, as it can simulate

both category and feature learning. Although CW ultimately yields some meaning-

ful categories, it does not acquire any knowledge pertaining to their features. This

is somewhat unrealistic given that humans are good at inferring missing features for

unknown categories (Anderson, 1991). It is also symptomatic of the nature of the al-

gorithm which does not have an explicit learning mechanism. Each node in the graph

iteratively adopts (in random order) the strongest class in its neighborhood (i.e., the

set of nodes with which it shares an edge). We also explored how memory resources

affect the learner’s performance and showed that it is beneficial to entertain multiple

hypotheses (i.e., numbers of particles) during learning. Furthermore, our model is able

to revisit past decisions via rejuvenation. We experimentally showed that the learner

revisits past decisions more frequently in the initial stages of learning when knowl-

edge is being acquired and there is more uncertainty. Our final experiment showed

that our model performs well on a typicality rating task when compared against a non-

incremental semantic space.

In our experiments, the BayesCat model learnt with Gibbs sampling yielded a cate-

gorization which is a closer fit to the cognitive gold standard compared to the particle

filter. Does this mean that the Gibbs sampler is a more plausible algorithm? From a

learning perspective, the answer is no: aside from the fact that humans acquire knowl-

edge incrementally, processing limitations do not permit revisiting past decisions ex-

haustively, by iterating over past experiences, as is the case for the Gibbs sampler. In
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view of this limitation, the incremental particle filters perform competitively through-

out our experiments.

Overall, our results highlight the advantages of the Bayesian framework for modeling

inductive problems and their learning mechanisms. Particle filters in particular suggest

a class of psychologically plausible procedures for learning under cognitive constraints

(e.g., memory or computational limitations). Although our experiments focused exclu-

sively on categorization, we believe that some of the inference algorithms employed

here could be easily adapted to other cognitive tasks such as word learning, word seg-

mentation, phonetic learning, and lexical category acquisition. Importantly, we have

shown that incremental learning in a Bayesian setting is robust and scalable in the face

of large volumes of data, and the resulting models perform competitively compared to

batch optimal learners.

Taken together our results further provide support for the important role of distribu-

tional information in categorization. We have demonstrated that co-occurrence in-

formation can be used to model how categories are learnt. Moreover, our typicality

experiments indicate that the responses people provide in typicality experiments are to

a certain extent reflective of the distributional properties of the linguistic environments

in which concepts are found. Although our focus in this chapter has been primarily

on the learning mechanisms of categorization, our experiments suggest that language

itself is part of the environment that determines conceptual behavior. Furthermore, the

fact that our models learn plausible categorizations from linguistic data alone would

seem to indicate that information relating to the perceptual experience of objects and

artifacts is encoded (albeit implicitly) in linguistic experience. In future work, it would

be interesting to tease the contributions of linguistic and perceptual experience apart. It

seems likely that no grounding is necessary for some concepts (or categories), whereas

for others grounding is essential.

In the future we would also like to relax some of our simplifying assumptions regard-

ing the learning environment which considers a single modality, namely language. It

is possible to augment the set of features our model is exposed to with information

from other modalities, such as the visual features of a scene, while leaving the model

structure and learning algorithm unchanged. Another potential extension would in-

volve augmenting the learning domain of the BayesCat model. In our experiments, the

set of target concepts was constrained to those present in our gold standard. This was

expedient for evaluation purposes, however there is no inherent limitation in the model
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which restricts its application to a specific domain or number of words. It would be

interesting to see whether the features learned by a model trained on a larger set of

target words differ qualitatively from those inferred from more limited domains.

We showed that BayesCat induces meaningful categories under a cognitively plausi-

ble learning mechanism. However, it learns unstructured bags-of-features for each

category. This is in conflict with results from prior research which suggest that hu-

mans represent category knowledge in structured ways, resembling the structure of the

world they represent (Murphy and Medin, 1985; McRae et al., 2005). The features

learnt by BayesCat emerge as a by-product of category acquisition – they are not op-

timized themselves during learning. Experimental evidence suggests, however, that

categories and features are learnt jointly, in a single process and mutually influence

each other (Schyns and Rodet, 1997; Goldstone et al., 2001). We address these short-

comings in the following chapter, where we develop a Bayesian model which learns

categories and structured featural representation jointly in a single process.



Chapter 5

Joint Acquisition of Categories and

their Structured Feature

Representations

Categorization is one of the most basic cognitive functions. It allows individuals to

organize subjective experience of their environment by structuring its contents. This

ability to group different concepts into the same category based on their common char-

acteristics underlies major cognitive activities such as perception, learning, and the use

of language. Global semantic categories (such as FURNITURE or ANIMAL) are shared

among members of societies, and influence how we perceive, interact with, and argue

about the world.

Given its fundamental importance, categorization is one of the most studied problems

in cognitive science. The literature is rife with theoretical and experimental accounts,

as well as modeling simulations focusing on the emergence, representation, and learn-

ing of categories. Most theories assume that basic level concepts such as dog or chair

are characterized by features such as {barks, used-for-sitting}, and are grouped into

categories based on those features. Although the precise grouping mechanism has been

subject to considerable debate (including arguments in favor of exemplars (Nosofsky,

1988), prototypes (Rosch, 1973), and category utility (Corter and Gluck, 1992)), it is

fairly uncontroversial that categories are associated with featural representations.

Less effort has been dedicated to the question of where those features come from.

Much theoretical and computational work on categorization assumes a fixed, readily
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available set of adequate features for categorization-related tasks. Recent theoretical

work, however, has challenged these assumptions. Experimental studies show that the

development of categories and feature learning mutually influence each other (Gold-

stone et al., 2001; Schyns and Rodet, 1997; Spalding and Ross, 2000): concepts are

categorized based on their features, but the perception of features is influenced by al-

ready established categories, and, like categories, features evolve over time. There is

also evidence that features such as {barks, runs} are grouped into types like behavior

(Ahn, 1998; McRae et al., 2005; Wu and Barsalou, 2009), and the distribution of fea-

ture types varies across categories (McRae and Cree, 2002). For instance, living things

such as ANIMALS have characteristic behavior, whereas artifacts such as TOOLS have

characteristic functions, and both categories have characteristic appearance.

Previously proposed models for category learning have largely considered the prob-

lems of category and feature learning in isolation, focusing either on category learning

given a limited set of simplistic features (Anderson, 1991; Sanborn et al., 2006) or fea-

ture learning (Austerweil and Griffiths, 2013; Baroni et al., 2010; Kelly et al., 2014),

but not both; or they learn from restricted, task-specific data sets (Shafto et al., 2011).

Moreover, influential models of categorization (such as Anderson (1991)’s rational

model of categorization, or ALCOVE (Kruschke, 1992) among many others) rely on

the availability of a pre-defined and fixed set of informative features associated with

every observed concept, such that “[...] the modeler, not the model, [... chooses]

the appropriate features for the considered categorizations” (Schyns and Rodet, 1997,

p. 684). Such models furthermore assume that features are independent and combine

linearly rather than being correlated or structured.

Our own BayesCat model, introduced in Chapter 4, learns categories from more realis-

tic input data in the sense that it is exposed to occurrences of concept mentions in their

natural language context, which may be noisy or contain information irrelevant to the

concept. BayesCat learns relevant features as sets of terms which are highly associ-

ated with specific categories from unfiltered input. Nevertheless, these features are (a)

flat, unstructured sets; and (b) emerge as a by-product of the category learning process,

but are not optimized themselves. In this chapter, we address these shortcomings and

tackle the problem of jointly learning categories and their structured representations.

We induce categories (e.g., ANIMALS) and their feature types (e.g., behavior) from

observations of target concepts (e.g., lion, dog, cow) and their co-occurring contexts

(e.g., {eats, sleeps, large}). Specifically, our model induces a set of categories and their
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representations in a single process by learning (a) categories as clusters of concepts;

(b) feature types as probability distributions over context words; and (c) category-

feature type associations as category-specific distributions over feature types.

We apply our model to large-scale collections of encyclopedic text, assuming that fea-

tural information is particularly explicit in this data set. Evaluation results show that

our cognitively motivated joint model learns accurate categories and feature types,

achieving results competitive with highly engineered approaches focusing exclusively

on feature learning. In line with our BayesCat evaluation in Chapter 4, we also inves-

tigate the behavior of our model under cognitively more plausible learning conditions.

We (a) expose our model to data resembling the input a child has access to when

learning categories and their features; and (b) model the human learning process more

faithfully through an incremental learning algorithm. Our model observes training data

sequentially and is subject to cognitive constraints in terms of memory limitations. We

show that our model acquires meaningful categories and features from child-directed

language, and analyze the influence of memory constraints on the learning process.

We begin this Chapter with a review of previous work (Section 5.1). We continue

with a detailed description of our joint model (Section 5.2) and introduce two learn-

ing algorithms: an “ideal” batch learner, and an incremental learner (particle filter).

Section 5.3 presents our large-scale evaluation based on encyclopedic data. In Sec-

tion 5.4, we evaluate our incremental learner on child-directed language. We discuss

our findings in Section 5.5 and draw conclusions from our results.

5.1 Categories and Structured Featural Representations

This section provides an overview of prior research in cognitive science which chal-

lenges the assumptions underlying many theories and models of categorization. We

review work supporting the claims that (a) featural representations are structured into

types of features and that the distribution of those types is category-specific (Sec-

tion 5.1.1); and (b) that category and feature acquisition are a joint process and the

two parts exert a mutual influence (Section 5.1.2). We also review relevant computa-

tional models of human category and feature learning from cognitive data and systems

for feature extraction from text (Section 5.1.3).
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5.1.1 Featural Representations of Concepts and Categories

Even though much empirical research glosses over this observation, there is strong

evidence that human conceptual representations are structured (see Rips et al. (2012)

for a recent critique and overview of cognitive studies of categorization). Categories

mentally represent the complex structure of the environment. They allow to make

inferences about concepts or categories that go beyond their perceived similarities

capturing abstract and potentially complex properties of categories (for example the

nutritional value of FOOD items, or the emotional benefits of PETS). Much

research on human categorization is based on laboratory experiments where subjects

are presented with artificial stimuli represented by a restricted set of task-relevant fea-

tures. Observations of natural concepts, however, are often noisy or incomplete so that

a notion of systematic relations among features might be more beneficial here than un-

der artificial conditions in the lab (Malt and Smith, 1984). The authors also discuss that

structure among features might be particularly important for superordinate level cate-

gories such as ANIMAL since they are represented by a much more heterogeneous set

of features than basic level categories (e.g., dog or fish). Our model induces structured

feature representations for superordinate level categories.

The existence of structured features has received support through behavioral results

from a variety of categorization related tasks, such as typicality rating (Malt and Smith,

1984) or category-based inductive inference (Heit and Rubinstein, 1994; Spalding and

Ross, 2000). Experimental evidence suggests that categories which on the surface do

not seem to contain a coherent set of members (e.g., the category PETS) are represented

by an underlying set of abstract features which explain the coherence of the category

(e.g., {keeps_company, lives_in_the_house}). Subjects’ categorical inferences suggest

that observed surface features of category members systematically activate associated

underlying features of newly observed concepts of the same category (Spalding and

Ross, 2000).

Varying the types of available features (e.g., providing functional information in

addition to objects’ appearance) leads to different categorization behavior both in

adults (Heit and Rubinstein, 1994) and children (Trauble and Pauen, 2007), and dif-

ferent feature types vary in their predictive value across categories. Jones et al. (1991)

show that children as young as 2-3 years old possess a notion of relations between

feature types and categories: otherwise identical stimuli were presented either with
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eyes (suggesting an ANIMATE category) or without. Children categorized stimuli with

eyes based on both their shape and texture, and stimuli without eyes based on their

shape only. Similarly, Macario (1991) showed that 2-4-year old children categorize

FOOD items based on their color, however, TOYS are classified based on their shape.

Gelman and Markman (1986) and Gelman and O’Reilly (1988) showed that children

are able to make category-related inferences that go beyond surface similarities of the

involved concepts. For example, children were presented with two stimuli, e.g., (1)

a tropical fish and (2) a large, gray dolphin. They were then presented a third stimu-

lus, e.g., a large gray shark, which was perceptually similar to (2) but was labeled with

the same name as (1) (i.e., fish) by the experimenter. Children made stronger infer-

ences based on shared category labels than on surface similarity. Apart from investi-

gating children’s behavior in a category-related inference task, Gelman and O’Reilly

(1988) also asked children to justify their inference decisions in an open-ended in-

terview paradigm. Children were indeed aware of the fact that members of the same

category shared important properties such as behaviors and structures irrespective

of shared visual features.

Another line of work has investigated children’s understanding of the fundamental

defining characteristics that determine the category membership of concepts. Keil

(1989) exposed participants to highly modified instances of ARTIFICIAL (e.g., chair)

and NATURAL (e.g., squirrel) categories and asked whether the modified concept still

belonged to the same category. He showed that surface manipulation changed category

judgments of ARTIFACTS (glueing leg extensions onto a chair and sawing off its back

changes its category into a stool), whereas similar manipulations do not change cat-

egory membership judgments for animates (dying a raccoon’s fur, fluffing up its tail,

and enabling it to release a smelly secretion when scared, leaves the animal’s identity

unchanged).1 Conversely, modifying molecular structure changed category member-

ship judgments for animates but not for artifacts (e.g., a chair made out of a material

which is used for making windsurfers remains a chair; but a discovery of a fundamen-

tal mistake in the analysis of a plant’s DNA will presumably change its category).

The structured nature of category features manifests itself in feature norms. Feature

norms are verbalized lists of properties that humans associate with a particular con-

1These patterns reliably emerge from judgments collected from adults and older children, however,
responses from younger children are less reliable and suggest the development of featural representa-
tions during concept and category acquisition in young children. We return to this phenomenon in detail
in Chapter 6.
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cept (McRae et al., 2005). Features collected in norming studies naturally fall into dif-

ferent types such as behavior, appearance or function. This suggests that structure

also emerges from verbalized representations of concepts and features such as men-

tions in natural language corpora, as used as stimuli throughout this thesis. McRae

et al. (2005) collected a large set of feature norm for more than 500 concepts in a

multi-year study, and classified their feature norms using a variety of theoretically mo-

tivated schemata, including the feature type classification scheme developed in Wu and

Barsalou (2009) and Barsalou (1999). Wu and Barsalou’s work suggests that humans

perform a “mental simulation” when describing a concept, they scan the mental image

they create as well as situations associated with that image, and then verbalize it when

producing features.

These rather theoretical motivations have received support from behavioral data col-

lected from patients with brain damage and impaired categorization abilities (Warring-

ton and Shallice, 1984; Humphreys and Forde, 2001). In their seminal study, War-

rington and Shallice (1984) systematically observed category-specific impairments:

groups of patients showed impaired categorization skills for ARTIFACTS, but also

BODYPARTS, while performing normally on the categorization of ANIMATES and MU-

SICAL INSTRUMENTS, and vice versa. While these observations are difficult to explain

on the category level, the authors suggest an interpretation on the featural level: AR-

TIFACTS and BODYPARTS, are strongly associated with functional features (such

as, {used_for_eating, used_for_walking}). On the other hand ANIMATES, like MUSI-

CAL INSTRUMENTS, are associated with perceptual or behavioral features (such

as, {makes_sounds}). A local representation of the respective feature types in sepa-

rate brain areas would provide an explanation of the observed behavior. Although the

authors offer no empirical evidence for their category-feature association hypothesis,

subsequent work revealed that descriptions of ARTIFACTS in dictionary entries contain

more functional features, whereas description of ANIMATES contain more perceptual

features (Farah and McClelland, 1991).

Further empirical evidence was provided by McRae and Cree (2002), who show that

feature type information extracted from a large collection of feature norms (discussed

above) explains not only the binary perceptual vs functional dichotomy found

by Warrington and Shallice (1984), but also a number of additional category-specific

deficits observed in brain-damage patients. Categories were represented in terms of

feature types created from a large set of human-produced feature norms using Wu and
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Barsalou (2009)’s coding scheme, which was developed and motivated independently

of explaining categorization deficits. Categories were then clustered using average-

link agglomerative clustering and groups of categories which were treated identically

(either impaired or non-impaired) by patients emerged. The results support the cen-

trality of feature types in category representations, providing further evidence that they

underly category representations in the brain.

The model we present in this chapter aims to capture the evidence summarized above,

and represent categories as structured sets of associated features. Category-specific

features are structured into types which relate to a particular kind of property of a

category (e.g., the behavior of ANIMALS). We also capture the observation that fea-

tures are defining for different categories to a varying degree (Keil, 1989; McRae and

Cree, 2002) in terms of category-feature type associations (e.g., the feature function

is highly defining for (or associated with) the category ARTIFACT not for the category

ANIMAL).

5.1.2 Joint Learning of Categories and their Features

Although the majority of models of categorization assume a fixed set of features under-

lying the category acquisition and categorization process, there is increasing evidence

that “[...] a significant part of learning a category involves learning the features en-

tering its representations.” (Schyns and Rodet, 1997, p. 681). Experimental evidence

suggests that not only do features underly the categorization process but features them-

selves are susceptible to change over time and can be modified by the categories which

emerge. Evidence ranges from changing featural perception as a result of expert edu-

cation (e.g., wine tasters or doctors learning to interpret X-ray images) to neurological

evidence revealing enhanced neural activity in experts when presented with pictures of

their area of expertise (see Goldstone et al. (2008) for an overview).

The influence of category learning on the perception and use of features has been stud-

ied extensively using visual stimuli of varying degree of naturalness and familiarity.

Pevtzow and Goldstone (1994) experiment with drawings of 2-dimensional line seg-

ments, and show that participants who were exposed to categorization training prior to

a feature identification task identified the presence of category-defining features faster

than participants without prior training. Goldstone et al. (2001) and Goldstone and

Steyvers (2001) presented participants with photographs of human faces, which were
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systematically manipulated. Participants were then asked to categorize the faces, and

after the categorization task showed higher sensitivity to the features which were rele-

vant for the categorization.

In contrast to the work discussed above which uses familiar concepts, Schyns and

Rodet (1997); Schyns et al. (1998) computer-generate visually complex 2-d images

of “Martian cells”, demanding substantial familiarization from their participants thus

minimizing the influence of prior knowledge which enables them to study the emer-

gence of features and change of their perception in isolation. Their experiments show

that (a) knowing the categorization of perceptual stimuli changes the perceptual units

on which the analysis of those stimuli are based; and (b) a change in the order of

category learning (based on change of order of stimulus presentation) influences the

perception of stimuli and leads to the emergence of different features.

Other work has explicitly investigated the incremental learning process of categories

and the ways how evidence encountered later in the learning process changes category

structure (Ross, 1997, 2000). In contrast to the work mentioned above, such experi-

ments involve conceptual rather than perceptual stimuli: participants learn classes of

diseases based on symptoms. They show that using learnt categories in categorization

tasks alters category representations, both when learning and usage are interleaved but

also when the learning process precedes usage.

Diaz and Ross (2006) investigate the incremental process of learning category struc-

ture. They show that interleaving inference questions on feature correlations with

categorization tasks mutually improves performance on both tasks over time. While

the previous experiment was conducted with adult participants, Bornstein and Mash

(2010) show that 5-months old infants are capable of learning categories of unfamiliar

objects on-line as new information becomes available.

Our model is the first model which learns categories and their features jointly in one

process from naturalistic input data. We show that meaningful categories as well as

relevant structured features emerge in an incremental manner, capturing characteristics

of the human learning process.
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5.1.3 Computational Models of Category and Feature Induction

We conclude our background section with a review of prior work on computational

models of category and structured feature induction. We begin with an overview

of cognitive models which aim to replicate behavioral data. Afterwards we review

knowledge-heavier approaches for feature extraction from text corpora.

The problems of category formation and feature learning have been considered largely

independently in the literature. Bayesian categorization models pioneered by Anderson

(1991) and recently re-formalized by Sanborn et al. (2006) are aimed at replicating

human behavior in small scale category acquisition studies, where a fixed set of simple

(e.g., binary) features is assumed. Our BayesCat model presented in Chapter 4 of this

thesis is similar in spirit, but was applied to large-scale corpora, while investigating

incremental learning in the context of child category acquisition (see also Fountain

and Lapata (2011) for a non-Bayesian approach). BayesCat associates sets of features

with categories as a by-product of the learning process, however these feature sets are

independent across categories and are not optimized during learning.

A variety of cognitively motivated Bayesian models have been proposed for the ac-

quisition of complex domain knowledge. Shafto et al. (2011) present a joint model

of category and feature acquisition in the context of cross-categorization, i.e., the

phenomenon that concepts are simultaneously organized into several categorizations

and the particular category (and features) that are relevant depend on the context

(e.g., concepts of the category FOOD can be organized based on their nutritional

or perceptual properties). They develop Bayesian models for category and feature

learning and find that only a joint model for both processes explains the emergence of

cross-cutting categories. In addition to a series of experiments based on small data sets

(comprising 8 concepts, 6 features and 2 categorization systems), Shafto et al. (2011)

also evaluate their model in a more naturalistic setting on a cross-categorization task

of ANIMALS and MUSICAL INSTRUMENTS based on human-produced feature norms.

This work is similar to our work in terms of the attempt to learn categories and features

jointly. However, while Shafto et al. (2011) present their model with category-specific

data sets tailored towards their learning objective, we are interested in acquiring cate-

gories and structured associated features jointly from thematically unconstrained cor-

pora of natural text.

Another line of work (Kemp et al., 2003; Perfors et al., 2005) models the joint learning
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of relevant features and domain-specific feature type biases in children. They focus on

the acquisition of domain-specific representational structures (such as hierarchies or

clusters) and discuss results in the context of word learning. In contrast to our work,

their model assumes a priori established categories (such as FOOD and ANIMALS),

and learns from task-specific data representations in the form of objects described by

a limited set of relevant features (however, a weighting of those features is learnt).

Perfors and Tenenbaum (2009) present a Bayesian model which simultaneously learns

categories (i.e., groupings of concepts based on shared features) and learns to learn

categories (i.e., abstract knowledge about kinds of featural regularities that charac-

terize a category). They compare their model predictions against behavioral data from

adult participants, which limits the scope of their experiments to small data sets e.g., of

artificial stimuli with a restricted number of abstract features. In addition to the differ-

ences in the training data, the models discussed so far were not tested under cognitively

motivated learning conditions, e.g., by using incremental learning algorithms.

The ability to automatically extract feature-like information for concepts from text

would facilitate the laborious process of feature norming and improve the coverage

concepts and their features. A few approaches to feature learning from textual cor-

pora exist, and they have primarily focused on emulating or complementing norming

studies by automatically extracting norm-like properties from corpora (e.g., elephant

has-trunk, scissors used-for-cutting). Steyvers (2010) use a flavor of topic mod-

els to augment data sets of human-produced feature norms. While vanilla topic mod-

els (Blei et al., 2003) represent documents as sets of corpus-induced topics, Steyvers

(2010) additionally use topics derived from the feature norms. The learnt topics yield

useful extensions of the original feature norms, with properties that were previously

not covered, suggesting that corpora are an appropriate resource for augmenting fea-

ture norms of concepts.

Another line of research concerns entirely text-based feature extraction. A common

theme in this line of work is the use of pre-defined syntactic patterns (Baroni et al.,

2010), or manually created rules specifying possible connection paths of concepts to

features in dependency trees (Devereux et al., 2009; Kelly et al., 2014). While the set

of syntactic patterns pre-defines the relation types the system can capture, the latter

approach can extract features which are a priori unlimited in their relation to the target

concept. Once extracted, the features are typically weighted using statistical measures

of association in order to filter out noisy instances. Similar to our own work, the mo-
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tivation underlying these models is large-scale unsupervised feature extraction from

text. These systems are not cognitively motivated acquisition models, however, due

to (a) the assumption of involved prior knowledge (such as syntactic parses or man-

ually defined patterns), and (b) the two stage extraction-and-filtering process which

they adopt. Humans arguably do not first learn a large set of potential features for con-

cepts, before they infer their relevance. The systems discussed above learn features for

individual concepts rather than categories.

To our knowledge, we propose the first Bayesian model that jointly learns categories

and their features from naturalistic large-scale input data. Our model is knowledge-

lean, it learns from raw text in a single process, without relying on parsing resources,

manually crafted rule patterns, or post-processing steps. Our work also differs from ap-

proaches which combine topic models with human-produced feature norms (Steyvers,

2010). Our aim is not to boost the generalization performance of a topic model, rather

we investigate how both categories and features can be jointly learnt from data.

5.2 A Bayesian Model for Joint Learning of Categories

and their Features

This section presents our Bayesian model of category and feature induction (hence-

forth, BCF). We give an intuitive overview of BCF, before we formally derive our

model. Afterwards, we derive two approximate learning algorithms: a Gibbs sampler

for batch learning (Section 5.2.1) and an incremental particle filter (Section 5.2.2).

Intuition BCF is a joint model for learning categories and their featural represen-

tation. In a single process, BCF acquires (a) categories (e.g., {ANIMAL, VEHICLE,

TOOL}) of concepts (e.g., {cat, car, drill}), (b) feature types (e.g., appearance,

diet, utility), and (c) associations between categories and feature types. Specifi-

cally, it infers one global set of feature types which is shared across categories (e.g., AN-

IMALS and VEHICLES can be described in terms of colors). However, categories dif-

fer in their strength of association with feature types (e.g., the feature type function

will be highly associated with TOOLS, but less so with ANIMALS). BCF jointly opti-

mizes categories and their featural representation: the learning objective is to obtain

a set of meaningful categories, each characterized by relevant and thematically coher-
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(k1) bouquet scarf hat

slipper coat veil hair

cape glove cap fur...
C

at
eg

or
ie

s (k2) buzzard penguin toad

crocodile bird chickadee

pheasant emu duck...

(k3) broccoli spinach

cauliflower yam potato

blueberry cantaloupe...

(k4) dresser apartment

shack gate basement

garage curtain cabinet...
Fe

at
ur

e
ty

pe
s

(g1) wear cover

veil woman coat

glove hair cap

face head

(g2) white black

color brown dark

colour yellow

spot red hair

(g3) mammal dog

food rodent rat

bird eat animal

rabbit mouse

(g4) wasp insect

beetley ant moth

beetle caterpillar

nest larva egg

Figure 5.1: Examples of categories (top) and feature types (bottom) inferred by the

BCF model from a corpus of encyclopedic text. Connecting lines indicate a strong

association between the category and the respective feature type.

ent feature types. Input to our model is a collection of natural language text stimuli,

each of which consists of a mention of target concept, within its local linguistic con-

text. We treat each stimulus as an observation of the concept: the word referring to the

concept as an instance of the concept itself, and its context words as a representation

of its features. The set of target concepts is fixed, however, the set of context words

(i.e., features) is potentially unbounded and determined by our input text corpora.

We assume that each concept belongs to a single category. We further assume that

each input stimulus refers to exactly one underlying feature type. Our goal in infer-

ence is to assign a feature type to each input, as well as a category to each concept

type. Specifically, the occurrences of a concept will be assigned a category based on

how similar the concept’s associated feature types are compared to the feature types as-

sociated with any potential category. Simultaneously, upon observing a stimulus (i.e.,

a concept in context), the model assigns the context to a particular feature type based

on its probability under all potential feature types, and the prior probability of observ-

ing that feature type with the stimulus concept’s assigned category. From a cognitive

point-of-view this is intuitive: relevant features are triggered by category membership:

cats and dogs might be discussed in terms of their diet, but chairs and tables are not;

their material may however be a relevant featural aspect. Conversely, if we encounter

an instance of a previously unknown concept which is described in terms of its diet,

we may infer that it belongs to the category ANIMAL with a higher probability than to

the category FURNITURE.

Figure 5.1 illustrates example output produced by our model, in terms of learnt cat-
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symbol explanation

d ∈ {1..D} stimulus (e.g., “This dog likes to catch balls.”)

c ∈ {1..C} concept mention in a stimulus

i ∈ {1..I} context word positions in a stimulus

` ∈ {1..L} concept types (e.g., cat, dog, chair, table)

f ∈ {1..V} features (e.g., {runs, barks, eats} {red, made_of_wood})

k ∈ {1..K} categories (e.g., ANIMAL, FURNITURE)

g ∈ {1..G} feature types (e.g., behavior, appearance)

θ K-dimensional parameter vector of category distribution

{µk}K
k=1 G-dimensional parameter vectors of feature type distributions

{φg}G
g=1 V -dimensional parameter vectors of word distributions

Table 5.1: Notational overview of the BCF model (the category and feature type labels

are provided for illustration; BCF is an unsupervised clustering model which induces

unlabeled categories and feature types).

egories, learnt feature types and their mutual associations. Connecting lines indicate

category-feature type associations. Feature types are shared across categories, for ex-

ample the categories CLOTHING (k1), BIRDS (k2), and FOOD (k3) are all associated

with feature type color (g2).

Model Description We now describe the BCF model more formally. Our model is

parameterized with respect to the number of categories K it can infer, as well as the

number of global feature types G that are available across categories. A distribution

over feature types is inferred for each category. We furthermore specify the set of L
target concepts a priori, and provide an input corpus which consists of stimuli covering

all and only these target concepts.

A notational overview is provided in Table 5.1 The generative story of our model is

displayed in Figure 5.2a, and Figure 5.2b shows the plate diagram representation of

BCF. The generative story proceeds as follows. We assume a global multinomial dis-

tribution over categories Mult(θ). Its parameter vector θ is drawn from a symmetric

Dirichlet distribution with hyperparameter α. For each concept type ` = [1...L ], we

draw a category k` from Mult(θ). For each category k, we assume an independent

set of multinomial parameters over feature types µk, drawn from a symmetric Dirich-

let distribution with hyperparameter β. Finally, for each feature type g, we draw a
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(a) Generative story of BCF.

Generate category distribution, θ∼ Dir(α)

for concept type `= 1..L do
Generate category, k` ∼Mult(θ)

for category k = 1..K do
Generate feature type distribution, µk ∼ Dir(β)

for feature type g = 1..G do
Generate feature distribution, φg ∼ Dir(γ)

for stimulus d = 1..D do
Observe concept cd and retrieve category kcd

Generate a feature type, gd ∼Mult(µkcd )

for feature position i = 1..I do
Generate a feature fd,i ∼Mult(φgd)

(b) Plate diagram of BCF.

gc f

k` θ αµkβ

φ γ

I

D

LK

G

Figure 5.2: Top (a): The generative story of the BCF model. Observations f and

latent labels k and g are drawn from Multinomial distributions (Mult). Parameters for

the multinomial distributions are drawn from Dirichlet distributions (Dir). Bottom (b):

The plate diagram of the BCF model. Shaded nodes indicate observed variables, clear

nodes denote latent variables, and dotted nodes indicate constant hyperparameters.
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multinomial distribution over features Mult(φg) from a symmetric Dirichlet distribu-

tion with hyperparameter γ. With these global assignments in place, we can generate

sets of stimuli d = [1...D] as follows: we first retrieve the category kcd
of an observed

concept cd; we then generate a feature type gd from the category’s feature type dis-

tribution Mult(µkcd ); and finally, for each position i = [1...I] we generate feature fd,i

from the feature type-specific feature distribution Mult(φgd).

The joint probability of the model over latent categories, latent feature types, model

parameters, and data factorizes as:

p(g, f ,µ,φ,θ,k|c,α,β,γ) =

p(θ|α)∏
`

p(k`|θ)∏
k

p(µk|β)∏
g

p(φg|γ)∏
d

p(gd|µkcd )∏
i

p( f d,i|φgd).
(5.1)

Since we use conjugate priors throughout, we can integrate out the model parameters

analytically, and perform inference only over the latent variables, namely the category

and feature type labels associated with the stimuli (see Sections 3.2.2.1 and 3.2.2.2 for

a mathematical discussion of this approach).

To sum up, our model takes as input a text corpus of concept mentions in local context,

and infers a concept categorization, a global set of feature types, as well as a distri-

bution over feature types per category. After integrating out model parameters where

possible, we infer two sets of latent variables:

(1) feature type-assignments to each stimulus {g}D,

(2) category-assignments to each concept type {k}L .

The next two sections introduce a batch learning algorithm (a Gibbs sampler; Sec-

tion 5.2.1) as well as a cognitively motivated incremental learning algorithm (a particle

filter; Section 5.2.2) for approximate estimation of these parameters.

5.2.1 Batch Learning

Exact inference in the BCF model is intractable, so we turn to approximate posterior

inference to discover the distribution over value assignments to latent variables given

the observed data. In this section we introduce a Gibbs sampling algorithm (Geman

and Geman, 1984) which is a Markov chain Monte Carlo algorithm which iteratively

re-assigns single variables based on the current assignments of all other variables. We
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Algorithm 4 The Gibbs sampling algorithm for the BCF model.
1: Input: model with randomly initialized parameters.

2: Output: posterior estimate of θ,φ, and µ.

3: repeat
4: for stimulus d do . Sample stimulus-feature type assignments

5: decrement stimulus d-related counts6:

gd ∼ p(gd
kcd = i|g−d

kcd , f−,kcd
,β,γ) Equation (5.3)

7: update stimulus d-related counts

8: for concept c do . Sample concept-category assignments

9: retrieve category kc

10: decrement concept c-related counts11:

kc ∼ p(k` = j|gk`,k
−,α,β) Equation (5.5)

12: update concept c-related counts

13: until convergence

discussed the theory underlying Markov chain Monte Carlo and the Gibbs sampler in

detail in Section 3.3.2 and describe here the particular instantiation of the algorithm for

our BCF model. The sampling procedure is summarized in Algorithm 4. The Gibbs

sampler repeatedly iterates over the training data set and resamples values of the latent

variables. One Gibbs iteration for our model consists of two blocks:

Resampling stimulus-feature type assignments. In the first block we iterate over

the input stimuli d, and resample each stimulus-feature type assignment gd from its

full conditional posterior distribution over feature types conditioned on (a) the values

assigned to all other latent variables unrelated to the current variable of interest, i.e, all

features except those in stimulus d,
(
f−
)
, and all stimulus-feature type assignments

except the one to stimulus d,
(
g−d

kcd

)
; (b) the category currently assigned to d’s target

concept c,
(
kcd)

; and (c) the relevant hyperparameters
(
β,γ
)
:

p(gd
kcd = i|g−d

kcd , f−, kcd
= j, β, γ) (5.2)

= p(gd
kcd = i|g−d

kcd ,k
cd
= j,β) × p( f d|f−,gd

kcd = i,γ) (5.3)

∝
(n j

i +β)

(∑i n j
i +β)

× ∏v ∏
fv
a=1(n

i
v + γ+a)

∏
f∗
a=1(∑v ni

v + γ+a)
. (5.4)
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The factorization of the posterior distribution in (5.3) follows from the model struc-

ture as described above and shown in the plate diagram in Figure 5.2b. The posterior

distribution factors into the probability of a particular feature type i and the probabil-

ity of the observed features in the stimulus given that feature type. Because of the

Dirichlet-Multinomial conjugacy in our model, these two distributions can be straight-

forwardly computed using only the counts of current value-assignments to all variables

in the model except the ones currently resampled (equation (5.4)):2 the probability of a

hypothetical feature type i is proportional to the number of times it has assigned previ-

ously to stimuli with observed category j, n j
i , smoothed by the Dirichlet parameter β.

Similarly, the probability of the observed features of stimulus d under hypothetical

feature type i is proportional to the number of times each individual feature v in d has

been observed under feature type i, ni
v (smoothed by the Dirichlet parameter γ). In the

second term in (5.4), fv refers to the count of any particular feature v in stimulus d,

and f∗ refers to the number of features in d (irrespective of their value).

We compute the (unnormalized) probabilities of individual hypothetical feature types i

as explained above. These values are then normalized and a new feature type is sam-

pled from the resulting distribution.

Resampling concept-category assignments. The second block of our Gibbs sam-

pler performs a sweep over all concept types ` ∈ {1...L}, and resamples each concept

type `’s category assignment k`. Similarly to the process described above, the new cat-

egory assignment of concept ` is resampled from its full conditional distribution over

categories conditioned on (a) all concept-category assignments except for k`,
(
k−
)
;

(b) the feature type assignments relevant to concept `,
(
g−k`
)
; and (c) all relevant hyper-

parameters
(
α,β
)
:

p(k` = j|g−k`, k−, α, β) = p(k` = j|k−,α) × p(gk`|g
−
k`,k

` = j,β), (5.5)

∝ (n j +α) ×
∏g ∏

f `g
a=1(n

j
g +β+a)

∏
f `∗
a=1(∑g n j

g +β+a)
. (5.6)

Based on the independence assumptions in our model, this probability factorizes into

the prior probability of hypothetical category j and the probability of feature types

observed with concept ` under the hypothetical category j (equation (5.5)). Like above

2Please refer to Section 3.3.2.3 (p. 47) for a mathematical explanation of this result, and to Ap-
pendix A for a detailed derivation.
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these probabilities can be computed purely based on counts of variable-assignments in

the current sampler state (equation (5.6)). In the second term of (5.6), f `g refers to the

number of times feature type g was assigned to a stimulus containing concept type `,

and f `∗ to the number of stimuli containing ` (irrespective of the assigned feature type).

Using the procedure described above we compute an (unnormalized) probability for

each hypothetical category, normalize the probabilities and resample concept `’s cate-

gory k` from the resulting distribution.

5.2.2 Incremental Learning

The Gibbs sampler introduced above stores the complete training data set, and passes

over it repeatedly, approximating the target posterior distribution in an iterative fash-

ion. This process does not resemble the nature of human learning. Humans learn

incrementally, updating knowledge on-the-fly with information observed in the envi-

ronment (Diaz and Ross, 2006), and are subject to memory limitations so that infor-

mation observed in the environment is not stored for future processing in its entirety

(Levy et al., 2009).

Here, we derive a particle filter (Doucet et al., 2001), an incremental learning algo-

rithm, which instills in our BCF model a cognitively plausible learning mechanism:

the training data are presented in an incremental fashion, stimulus by stimulus, and

re-vision of previously encountered data is only possible to a limited extent. As dis-

cussed previously in this thesis (Section 3.3.3, Section 4.3.2), particle filters are an

instantiation of the sequential Monte Carlo estimation framework which maintain an

approximation of the target distribution through a set of hypotheses, and update these

samples incrementally in real-time as novel information becomes available. Particle

filters allow to flexibly adapt the memory capacity of the algorithm by varying the

number of samples N maintained from the posterior distribution (particles). With an

increasing number of particles, the filter can represent the probability space increas-

ingly accurately (with the number of particles approaching infinity, the approximation

is guaranteed to converge towards the target posterior distribution).

The process particle filtering for the BCF model is schematically illustrated in Fig-

ure 5.3 (a). Each particle maintains a sample as concrete instantiation of a categoriza-

tion and featural representation. Figure 5.3 (b) illustrates the information contained in
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Figure 5.3: (a) Visualization of the particle filtering procedure for BCF with a 3-particle

filter. Each particle corresponds to a clustering of the observed stimuli (category-

assignments of observed concepts (circles), and feature type assignments of observed

stimuli (boxes)) up to time t (left) . The collection of weighted particles is the current ap-

proximation of the posterior distribution over clusterings (right). The 5 stimuli observed

by the filter are shown in the tables. We show one update step for all particles with stim-

ulus 5, and one subsequent resampling and rejuvenation step. In the resampling step

the highest-weight (red) particle is duplicated, replacing the lowest-weight (green) par-

ticle. In the rejuvenation step each particle revisits previous categorization decisions;

(b) a zoom into the red particle at time t = 5 (revised). Each particle consists of a set

of categories (left), category-specific distributions over feature types (indicated through

weighted connections), and featuretype-specific distributions over features (right). We

labeled the categories and feature types for illustration.
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Algorithm 5 The Particle Filter for the BCF model.
1: Initialize particles by randomly partitioning first d stimuli . Initialization

2: Initialize weights wd = 1
N

3: for stimulus t = [d +1..T ] do
4: for particle n = [1...N] do
5: . Particle Updatezt

n = {gdt
n ,k

cdt
n } ∼ q(z1:t−1

n |y1:t−1)q(zt
n|zt−1

n ,yt)

= p(gdt = i,kcdt
= j|f−,g−,k−;α,β,γ) Equation (5.7)

St
n← (St−1

n ,zt
n)

6: . Weight Updatew̃t
n = wt−1

n × p(yt |zt−1)

= wt−1
n ×∑

i
∑

j
p(gdt = i,kcdt

= j|f−,g−,k−;α,β,γ)

7: wt ← normalize(w̃t)

8: if ESS(wt)≤ thresh then . Resampling

9: P (i)←{Mult(wt)}N
i=1

10: wt = 1
N

11: for particle n ∈ P (i) do . Rejuvenation

12: for rejuvenation point o = [1...O] do

r ∼ unif(0,1)

o∼ unif(1...t) ; gdo ∼ eqn (5.3) if r ≤ 0.8

o∼ unif(1...C) ; ko ∼ eqn (5.5) otherwise

each particle at any time. An algorithmic overview of the particle filter is displayed in

Algorithm 5.

The particle filter propagates a set of weighted hypotheses or particles through time.

We introduce a notion of time into our model by defining each individual stimulus

observation as a time step. At any time t each particle corresponds to a categoriza-

tion, a set of feature types, and category-feature type associations based on all stimuli

observed up to time t, as illustrated in Figure 5.3 (b). At each time the current observa-

tion is integrated individually into each particle, and the particle state and its weight are

updated with the new information and propagated to time t + 1. This update process

is schematically illustrated in Figure 5.3 (a), where stimulus 5 is integrated into each

of the three particles containing a category and feature representation of previously

encountered stimuli 1–4.
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Technically, the particle filter for the BCF model is based on the technique of sequential

importance sampling (SIS; see Section 3.3.3 for a technical introduction) and its struc-

ture resembles the structure of the particle filter developed for the BayesCat model

in Section 4.3.2.1. Samples representing the target distribution of interest (here the

posterior distribution of the BCF model) are obtained from an importance distribution

(which is easier to sample from than the exact posterior distribution). Each sample is

assigned a weight according to its discrepancy from the true target distribution. The

importance distribution in our particle filter is represented through the set of particles

available from the previous time step (approximating the target posterior at time t−1).

Samples and weights are recursively updated from time t−1 to time t with information

extracted from novel input stimuli observed at time t.

In each update step, we sample a feature type for stimulus dt , gdt , as well as a category

for stimulus dt’s concept, kgdt , and update the relevant distributions as follows. Inde-

pendently for each particle, we sample
(
gdt ,kcdt ) jointly from its posterior distribution

conditioned on the particle’s state from time t− 1 which incorporates all information

encountered up to this time (see lines 5–6 in Algorithm 5),

P
(
gd = i,kcdt

= j|f−,g−,k−;α,β,γ
)

∝

P
(
kcdt

= j|gk`,k
−,α,β

)
× P

(
gd

kcd = i|g−d
kcd , f−,kcd

= j,β,γ
)
.

(5.7)

The two components on the right-hand side correspond to equations (5.5) and (5.3),

respectively. This posterior distribution takes into account both the prior probabilities

over (k,g), represented through the particle swarm at time t, as well as the data in the

observation at time t.

From an importance sampling perspective, this posterior distribution is locally opti-

mal3 in the sense that it minimizes the divergence of the importance weights (see Sec-

tion 3.3.3, page 51 f. for a detailed discussion). The importance weights themselves

are updated according to the predictive probability of observation t, and normalized to

sum to one (see lines 6–7 in Algorithm 5).

Despite the local optimality of our importance distribution, the repeated approximate

particle updates ultimately lead to divergence of the particle weights, resulting in few

or even only one particle accumulating the majority of weight mass. Practically the

empirical estimation of the posterior distribution through the set of weighted particles

3It is locally optimal because it assumes that previous particle states (i.e., variable assignments) are
fixed.
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then corresponds to a point estimate: the filter does not accurately represent the area

under the target distribution. Figure 5.3 (a) illustrates the phenomenon of high variance

in particle weights after particle propagation from t = 4 to t = 5 (right).

Resampling Like in the particle filter for the BayesCat model (Section 4.3.2.1) we

alleviate this problem through resampling, a technique to improve the coverage of

the sample space through our particles. A resampling step is executed whenever the

variance among particle weights exceeds as threshold. Weight variance is measured

through the effective sample size (ESS):

ESS(wt) =

(
1

∑n(wt
n)

2

)
. (5.8)

Whenever this value falls below a threshold we resample N particles from a Multi-

nomial distribution parameterized by the current set of particle weights N times with

replacement. This leads to multiple copies of high-weight ‘good’ particles which rep-

resent the high-probability areas of the sample space, and which are further explored

in the learning process. Low-weight (‘bad’) particles which do not get sampled in

this process are discarded. After resampling, the particle weights are re-set to uni-

form since the resulting sample of particles corresponds to an empirical estimate of

the previous weight distributions. The resampling process corresponds to lines 8–10

in Algorithm 5, and illustrated in Figure 5.3 (a).

Rejuvenation While resampling re-configures the particle filter such that it explores

high-probability areas of the sample space, it impoverishes the sample: The repre-

sentation of the distribution contains multiple copies of identical samples. Further-

more, low-weight particles are discarded which may well be only locally unlikely and

might be accurate at a later stage after more data has been observed. To introduce

diversity back into the resampled particle set a technique called rejuvenation can be

applied, which ‘jiggles’ each resampled particle without altering the distribution it

represents (Gilks and Berzuini 2001, see Section s3.3.3.3, page 54).

We jiggle each resampled particle according to a Gibbs kernel which leaves the target

posterior distribution unchanged. We randomly resample a fixed number of stimulus-

feature type assignments to previously encountered stimuli, and concept-category as-

signments to previously encountered concepts. We resample feature types 80% of the

time since these variables are assigned on the stimulus-level and whereas categories
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are assigned to concepts which are much smaller in number. The rejuvenation proce-

dure is illustrated in the bottom part of Figure 5.3 (a), and technically summarized in

Algorithm 5 (line 12 onwards). As discussed in Section 4.3.2.1 rejuvenation is also

plausible from a cognitive point of view, since human learning is not strictly incremen-

tal: it is possible to re-consider knowledge in the light of newly gained observations or

evidence.

5.3 Experiment 3: Large-Scale Category and Feature

Learning

In this and the following section we evaluate model performance under the two in-

ference algorithms. This section focuses on evaluating the quality of categories and

feature types obtained by our model when applied to a large-scale corpus and learned

in an optimal batch fashion with the Gibbs sampler, and compares BCF to a compet-

itive text-based feature extraction model. We evaluate BCF as a cognitive model of

human category and feature learning in Section 5.4. We present a detailed analysis

of the categories, feature types and category-feature type associations. We start by

presenting our data set, before we introduce the models used for comparison with our

approach, and explain how system output was evaluated. We then report results on a

series of experiments.

Data Like in the BayesCat evaluation (Chapter 4), our experiments are based on a

set of basic level target concepts (e.g., cat or chair) from two norming studies (McRae

et al., 2005; Vinson and Vigliocco, 2008), which were subsequently classified into

41 categories (Fountain and Lapata, 2010). The data set was described in detail in

Section 4.4.1 (p. 80). Here, we use 34 of these categories as a goldstandard in our

categorization experiments (comprising 492 concepts in total). We filter the set of cat-

egories for the joint category and feature evaluation, excluding very general categories

such as THING or STRUCTURE. This decision is based on the intuition that it is difficult

to identify characteristic features for them. As a heuristic, concepts were excluded if

they were close to the root of WordNet (Fellbaum, 1998b), e.g., at depth 2 or 4.

To obtain the input stimuli for the BCF model, we used a subset of the Wackypedia cor-

pus (Baroni et al., 2009), an automatically extracted and part of speech tagged dump of
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the English Wikipedia. For each target concept, we identified one corresponding article

in Wackypedia. We identify mentions of target concepts c in the resulting data set and

define context as the set of words making up the sentence c occurs in (except c). Next,

we extracted a set of stimuli which consists of (a) every sentence from the concept’s

corresponding article, and (b) any sentence in a different article which mentions the

concept. This resulted in a data set of 63,076 stimuli which we split into 60% training,

20% development and 20% test. We removed stopwords as well as words with a part

of speech other than noun, verb, and adjective. Furthermore, we discarded words with

an age of acquisition above 10 years (Kuperman et al., 2012) to restrict the vocabulary

to frequent and generally familiar words, which reduced the set of context word types

from 25,100 to 6,500 (by 74%).

Models and Parameters We compared the performance of BCF against BayesCat,

our Bayesian model of category acquisition introduced in Chapter 4 and Strudel, a

pattern-based model which extracts concept features from text (Baroni et al., 2010).

In all experiments in this section BCF is trained in a batch fashion using the Gibbs

sampler introduced in Section 5.2.1.

BayesCat induces categories which are represented through a distribution over target

concepts, and a distribution over features (i.e., individual context words). In contrast to

BCF, it does not learn types of features. In addition, while BCF induces a hard assign-

ment of concepts to categories, BayesCat learns a soft categorization. Soft assignments

are converted into hard assignments by assigning each concept to its most probable cat-

egory as described in Section 4.4 (equation (4.9), page 84). We ran BayesCat on the

same input stimuli as BCF, with the following parameters: the number of categories

was set to K = 40, and the hyperparameters to α = 0.7,β = 0.1,γ = 0.1. For the

BCF model, we used the same value for K = 40, the number of feature types was set

to G = 75, and the hyperparameters to α = 0.5,β = 0.5, and γ = 0.1. Parameters were

tuned on the development set. For both models, we report results averaged over 10

Gibbs runs, each represented as the final sampler state after 1,000 iterations. We used

annealing during learning which proved effective for avoiding local optima.

Strudel automatically extracts features for concepts from text collections following

a pattern-based approach. It takes as input a part of speech-tagged corpus, a set of

target concepts and a set of 15 hand-crafted rules. Rules encode general, but quite

sophisticated linguistic patters which plausibly connect nouns to descriptive attributes
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(e.g., extract an adjective as a property of a target concept mention if the adjective

follows the mention, and the set of tokens in between contain some form of the verb

‘to be’. (Baroni, 2010)). Strudel obtains a large set of concept-feature pairs by scanning

the context of every occurrence of a target concept in the input corpus, and extracting

context words that are linked to the target concept by one of the rules. Each concept-

feature pair is subsequently weighted with a log-likelihood ratio expressing the pair’s

strength of association. Baroni et al. (2010) show that the learnt representations can be

used as a basis for various tasks such as typicality rating, categorization, or clustering

of features into types. We obtained Strudel representations from the same Wackypedia

corpus used for extracting the input stimuli for BCF and BayesCat. Note that Strudel,

unlike the two Bayesian models, is not a cognitively motivated acquisition model, but

an optimized system developed with the aim of obtaining the best possible features

from data.

5.3.1 Quality of Learnt Categories

In our first experiment we evaluate the quality of the categories induced by the three

models presented above. The models produce hard categorizations, however, the cog-

nitive gold standard we use for evaluation (Fountain and Lapata, 2010) represents soft

categories. We obtained a hard categorization by assigning members of multiple cate-

gories to their most typical category (typicality scores are provided with the data).4

Method BCF and BayesCat learn a set of categories which we can directly compare

to the gold standard. For Strudel, we produce a categorization as follows: we represent

each concept as a vector over features (obtained from Wackypedia), where each com-

ponent corresponds to the concept-feature log-likelihood ratios provided by Strudel.

Following Baroni et al. (2010), we then cluster the vectors using K-means and the

Cluto toolkit.5 As for the other models, we set the number of categories to K = 40.

Metrics We use the same metrics for category quality assessment as in the evalua-

tion of our BayesCat model in Chapter 4. They are described in detail in Section 4.4

(pages 84 ff.). To assess the quality of the clusters produced by the models, we measure

4http://homepages.inf.ed.ac.uk/s0897549/data/.
5http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

http://homepages.inf.ed.ac.uk/s0897549/data/
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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hom com v1 pur col pcf1

Random 0.32 0.28 0.30 0.20 0.14 0.16

BCF 0.68 0.64 0.66 0.59 0.52 0.55
BayesCat 0.65 0.59 0.62 0.57 0.45 0.50

Strudel 0.70 0.62 0.66 0.61 0.48 0.54

Table 5.2: Model performance on the category induction task.

purity (pur; the extent to which each learnt cluster corresponds to a single gold class)

as well as its inverse, collocation (col; the extent to which all items of a particular gold

class are represented in a single learnt cluster). Both measures are based on set-overlap,

and we also report their harmonic mean (pc f 1; Lang and Lapata (2011)). In addition,

we report the V-measure (v1; Rosenberg and Hirschberg (2007)) and its factors measur-

ing the homogeneity of clusters (hom) and their completeness (com). The two factors

intuitively correspond to purity and collocation, but are based on information-theoretic

measures.

Results Our results are summarized in Table 5.2. In addition to model perfor-

mance we report PCF1 and V-Measure for a random clustering baseline (cf., Sec-

tion 4.4.1, page 86 for a discussion). The score reflects average cluster quality of

10 random assignments. Overall, the results reveal that BCF and Strudel perform al-

most identically, and both outperform BayesCat. BCF learns the categories from data,

whereas for Strudel we construct the categories post-hoc after a highly informed fea-

ture extraction process (relying on syntactic patterns). It is therefore not surprising that

Strudel performs well, and it is encouraging to see that BCF does too. Also, note that

Strudel tends to learn clean clusters at the cost of recall, whereas the tradeoff is less

extreme for BCF. This patterns is commonly observed with pattern-based approaches,

like Strudel. It is tempting to attribute the superior performance of BCF compared

to BayesCat to the advantage of a joint learning process for categories and features

in knowledge-lean, cognitively motivated models. However, there is another factor

to consider. While BCF and Strudel are constrained to assign each concept to only

one category, BayesCat induces a soft categorization which is turned into a hard cat-

egorization in a post-learning step. While this setting allows for more flexibility, it

also induces more uncertainty and results in categorizations which resemble the gold

standard less closely compared to the two other models.
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5.3.2 Quality of Learnt Features

We next investigate the quality of the features BCF learns by letting the model predict

the right concept solely from a set of features. If a model has acquired informative

features, they will be predictive of the unknown concept. Specifically, the model is

presented with a set of previously unseen test stimuli with the target concept removed.

For each stimulus, the model ranks all possible target concepts based on the features f
(i.e., context words).

Method We compare the ranking performance of BCF, BayesCat, and Strudel, like

in the category evaluation above. For the Bayesian models, we directly exploit the

learnt distributions. For BCF, we compute the score of a target concept c given a set of

features as:

Score(c|f) = ∑
g

P(g|c)P(f|g). (5.9)

Similarly, for BayesCat we compute the score of a concept c given a set of features as

follows:

Score(c|f) = ∑
k

P(c|k)P(f|k). (5.10)

For Strudel, we rank concepts according to the cumulative log-likelihood ratio-based

association score over all observed features for a particular concept c:

Score(c|f) = ∑
f∈f

association(c, f ). (5.11)

Metrics We report precision at rank 1, 10, and 20. We also report the average rank

assigned to the correct concept. All results are based on a random test set of 2,000

previously unseen stimuli. To control for the possibility that the models are learning a

strong (yet trivial) correlation between target concepts and identical words occurring

as features, we also report results on a modification of our test set where we remove

any mention of the target concept from the context, if present (the −tgt condition).

Results Our results on the concept prediction task are shown in Table 5.3. Both

Bayesian models (BCF and BayesCat) outperform Strudel across all metrics and con-

ditions. Strudel’s extraction algorithm, which relies on pre-defined patterns, might be
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pr@1 pr@10 pr@20 avg rank

BCF
full 0.12 0.50 0.63 56.1

−tgt 0.09 0.40 0.53 78.5

BayesCat
full 0.11 0.49 0.64 37.7
−tgt 0.09 0.39 0.53 52.4

Strudel
full 0.07 0.33 0.47 64.4

−tgt 0.07 0.35 0.49 62.2

Table 5.3: Model performance on the concept prediction task in terms of precision

at rank 1, 10, 20, and average rank assigned. −tgt refers to the condition where we

remove context words which are identical to the target concept as opposed to using the

full context.

too restrictive with respect to the set of features it extracts which as a result are not

as discriminative as the features learnt by BCF and BayesCat, which are a priori un-

restricted. BayesCat and BCF perform comparably given that they learn from exactly

the same data and exploit local co-occurrence relations in similar ways. BayesCat pro-

duces better average rank scores than BCF, while achieving lower precision scores.

This can be explained by the fact that BCF assigns low ranks to correct concepts more

reliably than BayesCat. Figure 5.4 shows the relative cumulative frequencies of the

ranks assigned by the three models. We display the top ranks 1 through 20 (out of

492). As can be seen, BCF performs slightly better than BayesCat. Pairwise differ-

ences between the systems are all statistically significant (p� 0.01); using a one-way

ANOVA with post-hoc Tukey HSD test).

Note that performance decreases for both Bayesian models in the −tgt condition,

i.e., when occurrences of the target concept are removed from the context. Strudel

is less affected by this given its pattern-based learning mechanism which is not prone

to associating target word types with themselves. However, repetitions are a natural

phenomenon from a cognitive standpoint and it seems reasonable to consider multiple

occurrences of a concept as a canonical feature of the learning environment.

Overall, the precision scores may seem low. However, bear in mind that the mod-

els rank a set of 492 target concepts. A random baseline would achieve a pr@1 of

only 0.002%. In addition, the target concepts we are considering are by design highly

confusable: They were selected so that they form categories and are thus bound to
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Figure 5.4: Number of times the correct target concept was placed within the top 20

ranks by BCF, BayesCat, and Strudel. The differences between the systems’ perfor-

mance are statistically significant (with the vector of 2K ranks as assigned by the par-

ticular systems as input; ANOVA (F=45.865 p< 0.01)).

share some features which makes the prediction task harder. Example output for all

three models is shown in Figure 5.5. The models take context features “journey move

hundred mile strong” and “avoid cut quick claw tip” as input and are expected to pre-

dict salmon and finger, respectively. Unlike Strudel, BCF and BayesCat rank salmon

almost correctly and the other high ranked concepts are reasonable in the given context

as well. For the second example, only Strudel predicts the correct concept correctly,

but again the top-ranked concepts of the other two models are reasonable in the given

context.

5.3.3 Quality of Learnt Feature Types

In this suite of experiments we evaluate two aspects of the feature types induced by

our model: (1) Are they relevant to their associated category? and (2) Do they form a

coherent class? Our evaluation followed the intrusion paradigm originally introduced

to assess the output of topic models (Chang et al., 2009). We performed two intrusion

studies using Amazon’s Mechanical Turk crowd-sourcing platform.

In the feature intrusion study, participants were shown examples of categories and a list
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salmon journey move hundred mile strong current

reproduce

BCF a salmon tuna goldfish lobster fish

BayesCat fish radio goldfish salmon clock

Strudel train house apartment ship car

finger avoid cut quick claw tip painful

BCF tent ski peg curtain hut

BayesCat eye ear spider leg hair

Strudel finger toe hair tail hand

Figure 5.5: Model output on the concept prediction task for salmon (top) and finger

(bottom): the top part of each table shows the true concept (left) and the context pro-

vided to the model as input (right). The bottom part of the table shows the five most

highly ranked concepts (left to right) for each model.

of feature types. Both categories and feature types were represented as word clusters.

Example tasks are shown in Figure 5.6. One of the feature types was an ‘intruder’ not

associated with the category in the model output, and participants were asked to detect

the intruder feature type. If a model learns relevant feature types, we would expect

participants to be able to identify the intruder relatively easily.

We also conducted a word intrusion study, where participants were shown a single

feature type (again represented as a word cluster). One of the words, which was not

highly associated with the feature type in the model output, was added as an ‘intruder’,

Figure 5.7 displays two example tasks. Again, participants were asked to detect the

intruder feature (i.e., word). If the features are overall coherent and meaningful, it

should be relatively straightforward to identify the intruder.

Method We compared the feature types learnt by BCF and Strudel. We omitted

BayesCat from this evaluation as it does not naturally produce feature types, rather it

associates unstructured lists of features with categories. As mentioned earlier, Strudel

does not induce feature types either, however, it associates concepts with features

which can be post-processed to obtain feature types as follows. Given a category in-

duced by Strudel (as explained in Section 5.3.1), we collected the features associated

with at least half of the concepts in the category with a log likelihood score no less



5.3. Experiment 3: Large-Scale Category and Feature Learning 141

‘Select intruder feature type (right) wrt category (left).’

ant hornet butterfly moth
flea beetle grasshopper
wasp caterpillar
cockroach

◦ egg female food young bird

◦ ant insect butterfly wasp larva

◦ body air fish blood muscle

◦ sound human nerve bird brain

• wear cover veil woman coat

◦ culture symbol popular feature animal

veil coat hair fur glove
cape hat cap bouquet
scarf slipper

◦ wear cover veil woman coat

◦ white black color brown dark

• cat box object litter mark

◦ eye tooth ear skin lip

◦ wear suit trouser woman garment

◦ animal feather material wool skin

Figure 5.6: Two illustrations of the feature type intrusion task, with annotator instruc-

tions shown at the top. The correct responses are marked with a filled circle.

than 19.51.6 We then clustered these features with K-means (using the Cluto toolkit)

into K = 5 feature types. Note that the Strudel feature types were (i) elicited through

a pipelined procedure, and (ii) are not shared across categories, but optimized for each

category individually. We therefore expect Strudel to perform well in this evaluation.

For BCF, for each category k, we select the five feature types g with highest associa-

tion P(g|k), together with one intruder feature type g′ which is highly associated with

some other category k′ but not with k. For Strudel we took the five feature types elicited

through the procedure described above, and one random feature type from the global

set of feature types. Each feature type was represented by a cluster of five words.

In the word intrusion task, participants were only shown feature types (i.e., word clus-

ters) irrespectively of the associated category. BCF feature types g were represented

as the set of the five words w with highest probability P( f |g). In addition, we added

one intruder word which had low probability under g but high probability under some

other feature type. For Strudel, we represented feature types as a random subset of five

words, and added an additional intruder word from the global set of features.

6Following Baroni et al. (2010), this number corresponds to a probability of co-occurrence below
0.00001, assuming independence.
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‘Select the intruder word.’

◦ ◦ • ◦ ◦ ◦
egg female box food young bird

• ◦ ◦ ◦ ◦ ◦
leg cat population dog wolf animal

Figure 5.7: Two illustrations of the word intrusion task, with annotator instructions

shown at the top. The correct responses are marked with a filled circle.

For the feature type intrusion task, we evaluated a total of 40 categories for each model.

Each participant assessed 10 categories per session (5 per model). Categories and fea-

ture types were presented in random order. For the word intrusion task, we evaluated

a total of 66 feature types for each model. Participants saw 11 feature types per ses-

sion, in randomized order. In both cases, we collected 10 responses per item. The

instructions given to participants in the Mechanical Turk experiments are included

in Appendix B.1 (for the feature type intrusion task), and in Appendix B.2 (for the

word intrusion task). The full set of stimuli for both tasks and systems is available

at http://frermann.de/mturk2015/.

Results We evaluated feature type relevance and coherence by measuring precision

(the proportion of intruders identified correctly). We also use the Kappa coefficient to

measure inter-subject agreement (Fleiss, 1981) on our two tasks.

Our results are presented in Table 5.4. Participants identify the intruder feature type

correctly more than 50% of the time. The performance of Strudel is slightly better

compared to BCF, both in terms of accuracy and Kappa (however the differences are

not statistically significant, using a t-test). Again this is not surprising considering

that Strudel’s feature types were elicited through a highly informed, pipelined process.

The results show that the simpler and cognitively plausible BCF model learns feature

types of a quality comparable to a highly engineered, competitive system. Examples of

feature types discovered by BCF and Strudel are shown in Figure 5.8, for the category

CLOTHING. As can be seen, Strudel obtains a large number of action-related features

(e.g., replace, change, steal ). BCF creates more varied feature types. For example,

the second cluster refers to external properties (e.g., color), the fourth cluster denotes

related concepts such as hyponyms, and the last cluster contains CLOTHING materials.

http://frermann.de/mturk2015/
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Feature Type Intrusion Word Intrusion
Precision Kappa Precision Kappa

BCF 0.52 0.23 0.78 0.60
Strudel 0.56 0.26 0.36 0.21

Table 5.4: Performance of Strudel and BCF on the feature type and word intrusion

tasks. We report precision and inter-subject agreement (Fleiss’ Kappa; all Kappa values

are statistically significant at p� 0.05).
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Figure 5.8: Example feature types learnt for the category CLOTHING by Strudel (top)

and BCF (bottom).

Concerning the word intrusion task, we observe that participants are able to detect

the intruder more accurately when presented with BCF feature types as compared to

Strudel feature types (differences between Strudel and BCF are statistically significant

at p� 0.05, again using a t-test). Figure 5.9 schematically illustrates the distribution

over the number of annotators that agree on the correct intruder word for both Strudel

and BCF. We can see (considering the combined green bars 9 and 10) that for more

than 50% of the test items either 9 or 10 out of 10 annotators agreed on the correct

intruder when presented with output from the BCF model. The results suggest that

the feature types learnt by BCF are more coherent, and indeed express meaningful

properties shared by concepts belonging to the same category. While being relevant

to the category, Strudel’s feature types do not seem to exhibit internal coherence to a

similar extent. The examples in Figure 5.8 qualitatively confirm this result: It is more

difficult to assign a meaningful label to the feature types induced by Strudel (top) than

to those induced by BCF (bottom). For example, the second BCF feature type from the

left could be labeled color and the rightmost one material. The mutual dependence

of category formation and feature learning allows BCF to learn feature types which are
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Figure 5.9: Illustration of Mechanical Turk annotator responses for the word intrusion

task. Each bar shows the proportion of all responses in which N ∈ {1, ...,10} annota-

tors agree on the correct label for BCF (green) and Strudel (orange).

both relevant and individually interpretable.

5.3.4 Discussion

We applied our joint model of category and feature learning, BCF, to large-scale

encyclopedic text extracted from Wikipedia, and showed that it effectively captures

category- and associated structured featural information encoded in this data. Evalu-

ation of the inferred categories and their features shows that BCF performs compet-

itively compared to a system specifically engineered to extract high quality features,

despite the more complex learning objective, and the knowledge-lean approach.

We approximated the learning environment with large text corpora extracted from

Wikipedia. However, we do not claim that the induced features closely correspond

to features produced by humans in human feature elicitation studies. Instead, we show,

through crowdsourcing-based human evaluation, that the learnt features are meaning-

ful in that they are relevant to their associated category and form a coherent class.
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Having demonstrated how our model performs on a broad task and under an optimal,

batch learning algorithm, the following section will focus on BCF as a cognitive model

of human learning.

5.4 Experiment 4: Child Category and Feature Learn-

ing

In this section we investigate the learning process of the BCF model under conditions

which more closely resemble those faced by children acquiring categories and asso-

ciated features. We apply BCF to a corpus of child-directed language, approximating

the learning environment that children are exposed to. We train BCF with the incre-

mental learning algorithm introduced in Section 5.2.2, which approximates the target

posterior distribution in an sequentially performing one sweep over the training data

and recursively improving its estimate. We refer to this incremental version as i-BCF

(and to its batch version learnt with a Gibbs sampler as BCF).

Our evaluation is structured into two parts. In the first part we are interested in ver-

ifying that i-BCF induces meaningful categories and feature types. To this end we

compare the incremental i-BCF to BCF, its Gibbs sampling-based counterpart. Both

models are trained on a corpus of child-directed language. We quantitatively evaluate

the induced categories, as well as the learnt feature representations. We also present

qualitative examples of categories and feature types induced by the particle filter. Hav-

ing confirmed that the incremental i-BCF model is capable of learning meaningful

categories and representations, we move on to investigate the effect of resource con-

straints on the learning process: we compare the performance of i-BCF models trained

with particle filters with varying numbers of particles.

Data The child-directed speech corpus underlying our BayesCat experiments (Sec-

tion 4.5) is not appropriate as input data to the (i-)BCF models, because the respective

stimuli comprise a context window of only ±2 words. Each concept mention is thus

represented by a very restricted feature set, which is likely too limited for learning

structured feature representations.7 Instead, we extracted a dense longitudinal corpus

7We confirmed this hypothesis experimentally: i-BCF models trained on the CHILDES corpus used
in Section 4.5 did not learn meaningful features and showed less discernible learning curves.
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of child-directed speech from the CHILDES database (MacWhinney, 2000), compris-

ing frequent recordings of child-parent interactions over an extended time span.8 From

this underlying data set we extract stimuli from it with a slightly larger context window

of ± 3 words.9

We create an input corpus, comprising four sub-corpora, all of which contain tran-

scribed speech data from natural interactions of children with their caretakers (mostly

their mothers) at home:

• The ‘Thomas’ corpus (Lieven et al., 2009) contains data from interactions with

one monolingual British English child who was recorded over a period of 3 years

(from age 2 to age 5). Recordings were made five times a week for one hour

during the first year, and for one hour per month in the two following years.

• The ‘MPI-EVA-Manchester’ corpus (Theakston et al., 2015) contains recordings

of interactions from two monolingual British English children. Their interac-

tions with caretakers were recorded between age 2 and 3. Recordings were made

10 times per month most of the time, but more frequently (10 times a week) for

the first and last two months of the recording period.

• The ‘Manchester’ corpus (Theakston et al., 2001) comprises recordings of 12

monolingual British children between 2 and 3 years old. The recordings are less

dense with two recorded sessions (30 minutes each) in every 3-week period for

one year.

• The ‘Providence’ corpus (Demuth et al., 2006) contains recordings form longi-

tudinal studies of 6 monolingual American English children aged between one

and three years. Recordings were made for one hour every two weeks.

We filter all child-produced utterances from the corpora, so that our input corpus con-

sists only of child-directed language. We divide the documents into time-stamped sub-

sets by conflating documents by the age of the child being spoken to into bins covering

one month. The earliest covered time period is 0 years 11 months, and the last period

is 4 years 11 months. We remove stop words, comprising a standard list of function

8This corpus also underlies the cognitive experiments on meaning development in child concept
representations in Chapter 6, and was thus constructed with a demand of temporally dense recordings
in mind.

9Note that spoken, child-directed language is largely made up of short utterances which frequently
switch topic, so that even larger context windows will result in a high proportion of irrelevant informa-
tion in individual stimuli.
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words, names, as well as a list of non-content words specific to child-directed speech

(for example different forms of ‘mum’ and ‘dad’).

We extracted input stimuli which consist of one target concept within a ±3 word con-

text window. We restrict the set of context words, removing all words which occur

fewer than 100 times in the resulting corpus of stimuli, leading to a reduction of con-

text word types from 10,922 to 1,459 (by 87%). We then only keep input stimuli which,

after context filtering, still possess their full context (i.e., six surrounding words). The

resulting corpus covers 119 target concepts from 26 different categories. This is a sub-

set of the 492 concepts used in the Wikipedia-based evaluation in Section 5.3. Due

to the nature of child-directed speech the remaining concepts did not appear in our

final corpus. We extract a total of 47,639 stimuli comprising 1,459 context feature

types. During the incremental learning process, the extracted stimuli are presented to

the model in chronological order, sorted with respect to the age of the addressed child.

Method We train i-BCF models on the CHILDES corpus described above using par-

ticle filters with varying numbers of particles, N ∈ {1,5,10,20,50,100}. We set the

effective sample size threshold for resampling to ESS(w) = 0.5∗N and rejuvenate 100

previously observed stimuli after each resampling process. These parameters are iden-

tical to the settings used in the incremental BayesCat experiment in Chapter 4. The

i-BCF parameters are set to the following values: the number of categories K = 30, the

number of feature types G = 35, and the hyperparameters α = 0.3,β = 0.1,γ = 0.1.

The parameter values were adapted to the smaller nature of the CHILDES corpus as

compared to the Wikipedia corpus, but not tuned exhaustively. For the particle filters

with N > 1 particles we report performance as the score of the best-performing particle.

All reported quantitative results are based on averages over 10 runs of any N-particle

filter.

In order to contextualize the performance of the i-BCF models, we also train a BCF

model (using a Gibbs sampler) on the CHILDES corpus. The BCF parameters are set

to the same values as those of i-BCF, and we ran the Gibbs sampler for 1,000 iterations.

Like in the Wikipedia experiments, we use annealing in order to avoid local optima.

Again, all results are averages over 10 runs of the sampler. Unlike in the Wikipedia

experiments, we do not report results on Strudel (Baroni et al., 2010) here. Strudel’s

feature extraction mechanism relies on a set of syntactic rules, which were defined for

grammatical (written) language. The language of the CHILDES corpus, however, is
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hom com v1 pur col pcf1

Random 0.54 0.48 0.51 0.35 0.29 0.32

BCF 0.72 0.67 0.69 0.62 0.55 0.58

i-BCF 0.47 0.45 0.46 0.56 0.56 0.56

BCF (Wikipedia) 0.68 0.64 0.66 0.59 0.52 0.55

Table 5.5: Quality of categories induced by the i-BCF model (with 100 particles)

and the BCF model when trained on the CHILDES corpus. We also report a ran-

dom clustering baseline (Random). For comparison we repeat the BCF results on the

Wikipedia corpus (note that due to differences in the underlying test set, the scores on

the CHILDES and the Wikipedia corpus are not directly comparable).

spoken and child-directed and hence frequently non-standard and ungrammatical.

We report categorization quality in terms of two automatic clustering evaluation scores,

purity, collocation, pcf1, and V-measure, as described in Section 5.3.1. In addition, we

compare i-BCF against BCF on its ability to predict a missing target concept based on

the stimulus context, as in the evaluation described in Section 5.3.2. We use a random

selection of 300 unseen test stimuli in this evaluation, and report precision at ranks

1, 10 and 20. In addition to these task-based evaluation metrics we also report the

learning curves in terms of model log-likelihood i-BCF models with varying numbers

of particles.

5.4.1 Quality of Learnt Categories and Features

We compared the output of the batch BCF model against the categories and features

learned by the incremental i-BCF model. All results reported in this section are taken

from the final representations induced by the highest-weighted particle of a 100 particle

filter after observation of the full training corpus, unless otherwise specified.

Table 5.5 compares the quality of induced categories of BCF and i-BCF, as well as

a random baseline (Random). Details on the random baseline and its misleadingly

high V-Measure scores are provided in Section 4.4.1 (page 86). We repeat the BCF

categorization performance on the Wikipedia corpus from Section 5.3. The quality of

categories induced by BCF on the two corpora are comparable, although the numbers

do not align directly since the target concept data sets for the two corpora differ in
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(g7) fish bird sea

duck water eat yay

frog tree shark

Figure 5.10: Examples of categories (top) and feature types (bottom) inferred by the

i-BCF model (with 100 particles) trained on the CHILDES corpus. Connecting lines

indicate a strong association between the category and the respective feature type.

size. BCF clearly outperforms i-BCF which is unsurprising given its ideal batch learn-

ing behavior. This observation is also in line with our comparison of the incremental

BayesCat model with its batch counterpart in the previous chapter (Table 4.6, Page 93).

Figure 5.10 displays qualitative examples of the categories and associated feature types

induced by the 100 particle i-BCF model from the CHILDES corpus. The examples

confirm that despite the quantitative gap in performance, the incremental model still

learns discernible categories and meaningful featural associations from child-directed

language. Categories such as ANIMAL (k3), BODYPART (k2) or FOOD and FRUIT (k7,

k8) emerge. A number / counting related feature type emerges (g2) which is asso-

ciated with a BIRTHDAY/CAKE category (k1), the BODYPART category (including the

concept finger) (k2) as well as category k6 which includes the concept clock. Over-

all, the feature types are not as interpretable as those induced from the Wikipedia

data (cf., Figure 5.5) which is unsurprising given the noisier data set of natural, child-

directed speech which, in contrast to Wikipedia, is not constructed with the explicit

single purpose of knowledge transfer.
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pr@1 pr@10 pr@20

BCF 0.12 0.51 0.67

i-BCF 0.07 0.32 0.49

Gibbs (Wikipedia) 0.12 0.50 0.63

Table 5.6: Comparison of the concept prediction performance of the i-BCF model

(with 100 particles) and BCF when trained on the CHILDES corpus. For comparison

we repeat the BCF results on the Wikipedia corpus (note that due to differences in

the underlying test set, the scores on the CHILDES and the Wikipedia corpus are not

directly comparable).

We compare the performance of BCF and i-BCF on the feature prediction task in Ta-

ble 5.6. We report precision results at ranks 1, 10 and 20.10 Models are presented with

the context of an unseen input stimulus and predict a ranking of target concepts based

on their probability in the given context, as described in Section 5.3.2. Again BCF’s

performance on Wikipedia is overall comparable to its performance on the CHILDES

corpus (but note that the numbers do not align directly due to different model set-

tings and test sets). Like in the previous evaluation, there is a drop in performance

for i-BCF, when compared to BCF. Note that i-BCF still performs significantly above

chance (random choice would lead to an expected precision at rank 1 score of 0.008).

Figure 5.11 lists examples of model output in the concept prediction task for i-BCF

models with 1-particle (N = 1), and 100-particles (N = 100), and for BCF. All mod-

els were trained and tested on the CHILDES corpus. The first example shows model

predictions for a test stimulus with context {silver vest red black car color}. Both the

100-particle i-BCF and BCF rank the correct concept (car) among their top 5 predic-

tions, which are overall coherent and meaningful. The 1-particle i-BCF predictions

are less relevant and less coherent. Examples 2–4 show instances where the correct

concept is highly ranked by most systems. Examples 5 and 6 display examples where

the advantage of batch BCF model becomes apparent. The context of example 6, {hair

love night eat worm food}, leads BCF to correctly consider the latter features and pre-

dict a set of relevant animals within the top 5 ranks. The i-BCF models on the other

hand seem go be deceived by the heterogeneous feature set of the stimulus, and make

less consistent predictions.

10Unlike in Experiment 3, we do not report average rank results because no meaningful pattern
emerged suggesting that they do not reflect model performance.
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1 car silver vest red black car color (rank)

i-BCF N = 1 cat pajamas bucket orange shirt (24)

i-BCF N = 100 train car helmet bicycle wheel (2)

BCF ambulance bicycle car tractor helmet (3)

2 crayon nicole chalk play move over draw (rank)

i-BCF N = 1 crayon crane ball envelope fence (1)

i-BCF N = 100 bed crayon hand pot ball (2)

BCF bus ball train pie crayon (5)

3 cup kettle boil ready tea lift orange (rank)

i-BCF N = 1 knife bin bag potato bread (6)

i-BCF N = 100 bed crayon hand pot cup (5)

BCF cup bottle orange tray fridge (1)

4 cat nice ginger pussy realize watch happy (rank)

i-BCF N = 1 door fridge cat key gate (3)

i-BCF N = 100 nose ear eye cat bear (4)

BCF cat mouse fence tail dog (1)

5 house actual park outside roof catch fire (rank)

i-BCF N = 1 train ambulance garage horse bicycle (21)

i-BCF N = 100 train car helmet bicycle wheel (23)

BCF telephone house mouse door spider (2)

6 bird hair love night eat worm food (rank)

i-BCF N = 1 hand cheese hair plate toilet (36)

i-BCF N = 100 bin chair box hair table (22)

BCF caterpillar butterfly frog bird crocodile (4)

Figure 5.11: Model output for the concept prediction task for i-BCF with 1 particle

(N = 1), i-BCF with with 100 particles (N = 100), and by the batch BCF model (BCF).

The top row of each example shows the true concept to be predicted (bold italics; left)

and the context provided to the model as input (right). The bottom part of each example

shows the five most highly ranked concepts (left to right) for each model, as well as the

rank of the correct concept in brackets on the right.
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Figure 5.12: Model log-likelihood development on the CHILDES corpus for i-BCF mod-

els with varying numbers of particles.

The qualitative examples do not only reflect the quantitative results presented in Ta-

ble 5.6, but also show that the task is far from trivial. Due to the removal of stopwords

and low-frequency words, the local context of a concept may not be highly predictive

of the missing concept. The 300 unseen test stimuli were selected at random without

filtering for meaningful contexts.

5.4.2 Analysis of Memory Constraints

In this section we investigate i-BCF’s incremental learning process itself. We are inter-

ested in (a) whether discernible learning curves in terms of continuous improvement in

performance emerge; and (b) how this process is influenced by restricting the number

of particles available to the particle filter. Increasing the numbers of particles allows for

a better empirical estimate of the sample space at the cost of exceedingly high memory

usage: each particle holds a sample from the posterior distribution of interest which

is individually updated with newly observed information. Clearly human cognitive

processing capabilities are limited by memory and we investigate the influence of the

number of particles on the quality of the representations learnt by our i-BCF models.

Method i-BCF models are sequentially presented stimuli of child-directed language,

chronologically sorted with respect to the addressed child. We compute learning curves

for i-BCF models trained with N ∈ {1,5,10,20,50,100} particles for a variety of eval-
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uation metrics. We report learning curves based on (1) model log-likelihood, a model-

internal measure for convergence; (2) category quality in terms of purity, collocation,

pcf1 measure, as well as homogeneity, completeness and v1; and (3) feature-based

concept prediction in terms of rank precision scores.

Results Figure 5.12 displays the development of model log-likelihood for particle

filters with varying numbers of particles. The overall log-likelihood values improve

for i-BCF models with an increasing number of particles (higher is better). This is

expected because more particles provide better coverage of the probability space and

hence approximate the posterior distribution is approximated increasingly accurately.

The difference in performance between the 1-particle filter and filters with multiple

particles is most pronounced, whereas filters with multiple particles available perform

very similarly. Note that performance differences are to some extent smoothed out

by the fact that the learning curves are based on average values for 10 runs of the

respective filters. Similar to our observation for the BayesCat model the log-likelihood

flattens out towards the end of the learning curve (Figure 4.8b, page 100). While

ideally it should eventually improve, we suspect that the size of the stimuli set used in

this experiment was too small.

Figures 5.13 and 5.14 display the development of category quality in terms of purity,

collocation and their harmonic mean (pcf1) in Figures 5.13a–5.13c, as well as homo-

geneity, completeness and their harmonic mean (V-measure) in Figures 5.14a–5.14c.

Overall, clearly discernible learning curves in terms of continuously improving qual-

ity emerge which gives further indication that our i-BCF models learn categories and

features effectively in a joint and incremental fashion. As a further overall pattern we

can observe that more particles lead to higher-quality category estimates throughout

the board.

Finally, Figure 5.15 displays the incremental process of learning to predict concepts

based on their surrounding features, and thus provides a measure of the development of

the quality of learnt featural representations over time. We report prediction precisions

at ranks 1, 10 and 20. Overall we observe again improvement over time. i-BCF models

with more particles again show superior performance, particularly in the early learning

phase.

Comparing performance across evaluation metrics (log-likelihood in Figure 5.12, cat-
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Figure 5.13: Purity (a), Collocation (b) and PCF1 (c) learning curves on the CHILDES

corpus for i-BCF models with varying numbers of particles.
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Figure 5.14: Homogeneity (a), Completeness (b) and V-Measure (c) learning curves

on the CHILDES corpus for i-BCF models with varying numbers of particles.
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Figure 5.15: Concept prediction learning curves for accuracy at rank 1 (a), rank 10

(b), and rank 20 (c) on the CHILDES corpus for i-BCF models with varying numbers of

particles.
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egorization in Figures 5.13 and 5.14, and concept prediction in Figure 5.15) shows that

the gap in performance is particularly pronounced for the 1-particle filter compared to

filters with multiple particles, especially in terms of the model-internal log-likelihood

metric. This is unsurprising as filters with more particles can explore the model space

increasingly effectively and are more likely to cover high-probability regions of the

parameter space. For the task-based evaluations, however, the performance across fil-

ters with varying number of particles is more comparable. This is in line with our

findings in the context of the BayesCat model discussed in Section 4.5.2 (page 106 f.):

Particle filters with a very moderate number of particles perform competitively across

task-based evaluations. Viewed in the context of human learning, this is an encourag-

ing result since it seems unlikely that humans have the cognitive capacities to maintain

a large number of ‘hypotheses’ in parallel for any learning task. We showed that our

incremental model can learn categories and featural representations effectively even

under limited resources.

5.4.3 Discussion

Learning to group concepts into categories and to identify their relevant features is a

formidable task children face. In this section we modeled the joint category and feature

acquisition process with a cognitively motivated Bayesian model. We showed that our

model induces discernible categories and featural representations from a corpus of

natural, child-directed language and under an incremental learning algorithm which

approximates the nature of human learning.

We presented our model with transcribed child-directed speech, approximating the

environment from which a child acquires category knowledge.11 The restriction to

purely linguistic input does not faithfully capture the breadth of information a child

has access to – visual and pragmatic cues are undoubtedly essential for any learning

process. Nevertheless, our models induced meaningful categories and featural repre-

sentations. Following the evaluation of BayesCat in Chapter 4, these results provide

11As discussed in Chapter 4 (page 107), high-frequency function words as well as rare words are
filtered from the input corpora presented to our models. This preprocessing step is very common in
modeling information from co-occurrence statistics in text corpora, and has been shown to increase the
interpretability and relevance of induced information. The models presented in this thesis are sensitive
to high-frequency words and induced features would likely be dominated bu function words. From a
cognitive point of view filtering high and low-frequency term can also be interpreted as an approximation
of attention: through pragmatic information such as prosody or gesture the child’s attention is guided
towards relevant words and their referents (Dominey and Dodane, 2004).
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further support to our hypothesis that linguistic input is a rich source of information

which incorporates much of the structure and information necessary for conceptual

learning.

We captured the incremental nature of human learning in our models by using a se-

quential Monte Carlo learning algorithm (particle filter). We showed that, while the

quality of learnt categories and representations decreases compared to an ideal batch

learner, meaningful representations nevertheless emerge. The batch learner, a Gibbs

sampler, can be viewed as an ideal observer which holds the complete training data

set in memory and repeatedly iterates over the data to improve the learnt representa-

tions. A particle filter, much more like humans, is presented with training data points

sequentially, observing one stimulus at a time, and immediately integrates the newly

observed information into the knowledge extracted from previously seen input.

With every input stimulus, our particle filter samples (a) a feature type for the stimulus

and (b) the category of the concept mentioned in the stimulus. Questioning category

membership with every observation of a concept, however, seems exhaustive. A more

realistic learner might only periodically re-consider its current belief about a catego-

rization whenever the associated featural representations have been skewed by recent

observations. One could imagine a resample-move based particle filter which samples

stimulus-level feature types with every input stimulus, but resamples a categorization

of concepts only periodically. However, we leave this project to future work.

5.5 Summary

This chapter presented BCF, a cognitively motivated Bayesian model which jointly

learns categories and their features, arguing that the two tasks are co-dependent. We

derived two approximate learning algorithms: a Gibbs sampler, which is an ‘ideal’

batch learner with access to all training data throughout the learning process; and an

incremental learner in form of a particle filter, an instantiation of a sequential Monte

Carlo algorithm which more faithfully resembles the incremental nature of human

learning. We investigated the incremental learning procedure as well as the influence

of memory constraints on the learning process through the particle filter.

Our model learns features from raw text without relying on elaborate pre- or post-

processing or pre-defined knowledge (e.g., in terms of syntactic patterns). We showed
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that high quality categories, feature types and their associations emerge from large-

scale encyclopedic data when estimated with a batch learner. In addition, we applied

our model to a corpus of cognitive data of child-directed language, approximating

the environment a child is exposed to when acquiring categories and their represen-

tation. Evaluation of the quality and development of acquired categories and features

demonstrated our model’s effectiveness under an incremental learning algorithm. We

also showed that its performance degrades gracefully when resource constraints are

imposed on the learning process.

An interesting direction for future work would be to learn feature types from multiple

modalities (not only text) and to investigate how different information sources (e.g., vi-

sual or pragmatic input) influence feature learning. The BCF model learns descriptive

feature types represented as a collection of feature values. In addition to such descrip-

tive features (e.g., behavior) categories also possess defining features (e.g., animate)

which are bound to one particular value. Extending the model in a way that allows to

learn qualitatively different types of features is desirable from a cognitive perspective.

In addition, it would be interesting to investigate the emergence of feature types with

nonparametric Bayesian methods.

Another interesting avenue for future work would be to explicitly evaluate the in-

cremental formation of categories and their featural representations experimentally

against behavioral data obtained from children: do categories and features form in the

same order as they do in child acquisition, and do the intermediate representations

captured by our i-BCF model resemble those found in young children? We expect this

evaluation to be challenging due to the difficulty to obtain longitudinal developmental

data for children.

Finally, the BCF model can be applied to tasks beyond those discussed in this chap-

ter. For example, one could learn definitions (aka features) of terms (aka concepts) in

specialist fields (e.g., finance, law, medicine) or monitor how the meaning of words or

concepts as represented by their features changes over time.

Chapters 4 and 5 of this thesis were concerned with modeling the acquisition of cate-

gories and features: we investigated the acquisition process of natural categories and

their structured featural representations from large-scale naturalistic input data with

computational cognitive models. Our evaluation implicitly assumed the existence of

one true categorization and, consequently, featural representation of concepts. The
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success of a learner was measured by the extent to which its output resembles this gold

standard categorization. Human conceptual knowledge, however, is flexible and sus-

ceptible to change: Conceptual representations have been shown to be dynamic and

adapt over time and situations. The following chapter is dedicated to these phenom-

ena and investigates the development of linguistic and conceptual representations over

time.



Chapter 6

Modeling Meaning Change over Time

The previous two chapters investigated the process of category and feature acquisition

assuming a single true “gold” categorization against which the quality of the model

output was evaluated. This assumption is reasonable to the extent that there exists a

strong agreement on the meaning of concepts and categories among members of a soci-

ety in order to ensure effective communication. Various phenomena suggest, however,

that conceptual representations can be dynamic, and flexibly adapt to the situation or

environment. Concepts and categories are our mental tools for efficiently represent-

ing and interacting with the world. These representations must be necessarily flexible

and able to adapt to the ever changing environment they represent. Gradual individual

(e.g., through education) or societal (e.g., cultural or technological innovation) devel-

opment over time triggers a smooth adaptation of concepts to match the demands of

their users.

Concept representations change in the course of learning, and this phenomenon has

been observed in both adults (Schyns and Rodet, 1997; Navarro et al., 2013) and chil-

dren (Keil, 1987). Due to limited exposure, children have imperfect and partial knowl-

edge which affects their concept representations. With added experience, their featural

concept representations become increasingly accurate and differentiated. For exam-

ple, young children tend to over-emphasize perceivable surface features of concepts

(e.g., they describe the concept uncle as a person who is a friend of the family

and frequently brings presents; Keil 1987). Over time, children learn the true

defining features of the concept (i.e, that an uncle is the brother of one parent).

Another example of flexibility in meaning representation concerns diachronic change

161
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of word meaning. Language is a dynamic system that constantly adapts to changes in

the cultural, economic or technical environment of its speakers (Traugott and Dasher,

2001). New words are established, for example in the context of technological inno-

vation (e.g., the verb to google), meanings of words are extended (e.g., for about ten

years the noun tweet has been used to refer to a short digital message) or restricted

(e.g., the word meat was originally used to refer to ‘food’ in general).

In this chapter we investigate meaning development of individual concepts. We de-

velop SCAN, a dynamic Bayesian model of Sense ChANge, which captures concept

meaning as a set of senses whose changing nature is tracked over time. We model

time as a sequence of discrete contiguous intervals and infer a meaning representa-

tion for each interval. Our model captures temporal variation within senses as well

as change across senses, in their relative importance. We explicitly model the smooth

and gradual nature of meaning change by enforcing that temporally adjacent meaning

representations are co-dependent.

We apply SCAN to two phenomena of dynamic development of conceptual represen-

tations.1 First, we investigate the change in concept representation in young children

over time. We expose SCAN to input stimuli extracted from transcribed speech directed

to children between one and five years in age, and monitor the development of meaning

representations with increasing age. We show that the learnt temporal representations

capture how premature child-like conceptual meanings develop towards more accu-

rate and nuanced representations. To the best of our knowledge, we present the first

computational study of meaning development in infants from naturalistic input. We

investigate thematically broad featural patterns for a variety of natural concepts.

In addition, we use SCAN to study diachronic change of natural language (McMahon,

1994). Specifically, we monitor semantic change of individual words over centuries.

We show that our model is able to detect changes across word senses like the emer-

gence of a new sense (e.g., the word mouse in the mid-20th century acquired a new

1A note on terminology: In both applications, our model will be presented with textual input in the
form of target terms in local context. In our child concept acquisition study, we will refer to target terms
as concepts and to their meaning representation as sets of feature types (e.g., a mouse has feature
types such as appearance or behavior). In this evaluation, concepts are nouns referring to living or
non-living things, on the basic category level. In the diachronic language change study, we will refer
to target terms as words and their representation as sets of senses (e.g., the word mouse has a sense
relating to animals and a sense relating to technical device). We will use words comprising an a
priori unrestricted set of nouns and verbs in our experiments. This distinction in terminology reflects the
conventions in the NLP and cognitive literature, respectively, and makes it easier to discuss our work in
the respective contexts.
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sense relating to a computer device). Moreover, it infers subtle changes within a sin-

gle sense (e.g., in the 1970s the words {cable, ball, mouse pad} were typical for the

computer device sense, whereas nowadays the terms {optical, laser, usb} are more

typical). We expose our model to a large text corpus of historical documents, cover-

ing more than three centuries, and show that it performs competitively on a range of

meaning change detection tasks whilst inducing discernible word senses and capturing

their development over time.

The remainder of this chapter is structured as follows. We motivate the two applica-

tions of SCAN and position it in the context of prior work in Section 6.1. Section 6.2

introduces our model formally and presents an approximate algorithm for parameter

estimation. Section 6.3 presents our experiments on concept meaning development

in children, and in Section 6.4 we evaluate SCAN on a variety of tasks relating to

diachronic word meaning change. Section 6.5 summarizes our findings.

6.1 The Dynamic Nature of Meaning

We present prior experimental work on the acquisition and development of concept

representations, and their change over time in Section 6.1.1. Section 6.1.2 reviews

previous work on capturing diachronic word meaning change. Both sections include

a review of previously proposed computational models, and position our own work in

this context.

6.1.1 Acquisition and Development of Concept Representations

One of the most fundamental and challenging problems a young child is confronted

with is to associate all and only relevant features with objects and concepts in her

environment: which properties define an object to be a ball? Is a round candle a ball?

What makes an animal a dog? Should it be alive? Does it have to possess a tail? Does

it have to live next door? Is it called Bello? In this chapter we investigate the process

with which featural representations of concepts develop in infants over time.

We review evidence for the dynamic nature of cognitive featural representations with

a particular focus on developmental patterns during concept acquisition in infants. We
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conclude with an overview of computational models of human feature learning (Sec-

tion 6.1.1.1).

The Dynamic Nature of Features The way humans acquire and use features sug-

gests that cognitive featural representations are flexible and susceptible to change.

First and foremost, children develop increasingly accurate concept representations over

time. Feature learning and refinement is not unique to children, but similarly occurs

in adults when they acquire new skills, e.g., in the process of specialist training, such

as learning to distinguish a healthy from a broken bone in X-ray scans (Schyns and

Rodet, 1997; Schyns et al., 1998; Norman et al., 1992). In this sense adults can be

viewed as ‘experts’ and children as ‘novices’ in the context of learning to categorize

and conceptually represent natural objects. In addition to individuals, societies create

new meanings and shift the meaning of the linguistic concepts they use in communica-

tion in order to accommodate changes in their environment and communicative needs.

We turn to this phenomenon in detail in Section 6.1.2.

Category representations do not only change diachronically, but also depend on the

local situational context, e.g., the set of additional concepts present in a scene. Tver-

sky (1977) showed that features used in similarity ratings change based on the set of

concepts at hand: asked which of {Sweden, Hungary, Poland} is most similar to Aus-

tria, participants respond with Sweden (based on neutrality in the Cold War). When

the same question is asked about {Sweden, Hungary, Norway} participants choose

Hungary (based on geographical proximity). Situational context also influences the

relevance of different features (e.g., the central features of an apple in a still life paint-

ing class likely differs from its central features in a lunch break context). This phe-

nomenon has received attention under the term of cross-categorization and has been

investigated both from a behavioral (Barsalou, 1987) and computational (Shafto et al.,

2011) perspective. Finally, established categories have an influence on the featural

representation of their members, as discussed in detail in Chapter 5.

The majority of behavioral studies (and computational models, see Section 6.1.1.1) on

the development of representations in human learning focuses on perceptual features.

These studies either investigate naturalistic adult learning processes such as learning to

detect injuries in X-ray scans (Schyns and Rodet, 1997; Norman et al., 1992) or they

are based on controlled laboratory experiments where participants learn discriminative

features for a set of abstract shapes (such as 2-d or 3-d computer rendered images
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with a controlled feature space). One notable exception is Austerweil and Griffiths

(2011), who experimentally investigate the acquisition of conceptual features in adults.

They expose participants to facts about “Martian animals” found on a meteorite and

investigate the development of the conceptual distinctions participants infer.

Conceptual Development in Children Common experience with conceptual mis-

takes young children make suggests that their concepts and categories blatantly di-

verge from those established among adults in a society. The differences in child and

adult representations as well as the reliable convergence of child representations to-

wards adult representations have received much attention in cognitive science and psy-

chological research in the past (see e.g., (Meadows, 2006, Chapter 2.12) for a recent

overview). Although initial research suggested that children are unable to create con-

sistent categories given a set of ‘sortable’ objects (such as blocks of different size,

shape or color, Inhelder and Piaget 1964), more recent results indicate that children

do possess coherent concepts. These representations, however, differ from adult rep-

resentations with regard to the salience given to different aspects of concept meaning,

which result from children’s limited general knowledge (Mervis, 1987).

A range of behavioral studies found patterns of inaccuracies in child-like concept rep-

resentations. On the basic category level, children (a) form categories that are broader

than adults’ (e.g., round objects are balls, Chapman et al. 1986); (b) form categories

that are narrower than adults’ (e.g., only the blue toy car is a car); or (c) form cate-

gories that partially overlap with adult categories (e.g., cars include trains but exclude

dune buggies, Mervis 1987). Other work has investigated the development of featural

category representations and their structure. Goldstone et al. (2001) found that children

conflate features that adults distinguish (e.g., shade and size).

Keil (1987) investigates the structure of featural representations for different kinds

of categories (animate, artifact and nominal), and their development. For socially con-

structed (nominal) concepts like uncle or tax he finds that the set of features shifts from

characteristic to defining.2 Children of different ages were presented with two kinds

of definitions of concepts such as uncle: the definition either (a) contained many typi-

cal (brings presents for Christmas) but no necessary (is brother of mother

2Characteristic features are properties which are highly associated with a concept, but not necessary
(e.g., although an island typically has sandy beaches, it remains an island even if this property is
absent). Defining features are essential and their lack would change the identity of the concept (e.g., a
piece of land that is not surrounded by water cannot be an island).
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or father) features; or (b) contained necessary, and in addition very untypical (is 2

years old) features. Results show that children with increasing age gradually shift

from preferring definition (a) to preferring definition (b). Similar patterns emerged for

categories of animates (i.e., living things), and artifacts through ’object transformation’

studies. Children of various ages were presented with scenarios in which perceptual

features of animate concepts were drastically changed (e.g., “[...] one takes a raccoon,

fluffs up his tail, sews a smelly sack inside, and even trains it to secrete the contents

when alarmed [...]” (Keil, 1987, p. 187). While younger children judge the animal to

change categories as a result of this transformation, older children and adults agree that

despite the drastic changes the animal is still a raccoon. (Gelman, 1988) confirms the

observed behavioral patterns for additional concepts and categories.

Why do the patterns of inaccuracies discussed above emerge, and how do child-like

representations eventually approach adult-like representations? Various explanations

and theories are offered in the literature. One salient argument concerns the lack of

general knowledge, or theories, that underlie child category representation (Murphy

and Medin, 1985). Young children do not know that the essence of animates (such as

raccoons) is captured in their DNA and that changing the raccoon’s perceptual features

will not change its fundamental property of being a raccoon. Similarly young children

are not aware of family relations that define the term uncle (Keil, 1987). They thus rely

on surface features which are prevalent and perceptible. Additionally, due to a lack of

experience, false beliefs or false features might temporarily influence the child’s cat-

egorization (e.g. a leopard, which looks similar to a cat might say “meow”, Mervis

1987). Finally, children may weigh features differently due to the limited set of situa-

tions they have been exposed to (Mervis, 1987): although they know all the properties

of the concept island, the features {water, beach, holiday} might be salient in the

child’s representation so that she temporarily classifies all places that resemble a beach

resort as islands (Keil, 1989, Chapter 4). Gelman (1988) shows an increased influence

of domain-specific knowledge on category-specific inferences in school children when

compared to pre-schoolers.

The development from child-like conceptual representations towards adult-like repre-

sentations has been shown to be individual. The characteristics of the child’s environ-

ment, i.e., the salience of different concepts in the surroundings influences the speed

and order of learning (Neisser, 1987). In addition, the feedback received through in-

teractions with adults has been shown to have an influence on the learning process
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(e.g., through explicit illustration of important properties of objects, or acknowledging

relevant properties that the child discovered herself, Mervis 1987). We will return to

individual developmental difference in feature learning in the analysis of our results.

The influence of language on the conceptual development in children has been the sub-

ject of debate and is difficult to pin down exactly (see (Goswami, 2014, Chapter 3) for

a discussion). Does increasing linguistic competence change mental concept repre-

sentations, or merely facilitate their communication? Evidence suggests that language

supports the acquisition of imperceptible, knowledge-based features, which allow chil-

dren to learn conceptualizations that go beyond perceptual representation (see also our

discussion in Section 2.1). Experiments with 2-year old children showed that linguistic

labels (e.g., ‘bird’) improve feature prediction accuracy when perceptual cues are not

informative (e.g., for atypical category members, Gelman and Coley 1990). In the ab-

sence of a label 2-year olds tend to predict features based on perceptual similarity (e.g.,

bird features are predicted for a dinosaur perceptually similar to a bird rather than for

atypical birds like pelicans). Similar studies showed that 3-4 year olds do not require

the label and are able to use structural knowledge immediately, which prevents them

from relying on misleading perceptual cues (Gelman and Markman, 1986, 1987).

Our experiments (Section 6.3) investigate the extent to which the developmental pat-

terns discovered in behavioral studies are captured by our computational model of dy-

namic sense change. We investigate this question from a modeling, and now position

our work in the context of previously proposed models of human feature learning.

6.1.1.1 Computational Models of Human Feature Learning

A variety of computational accounts for human feature learning have been proposed

ranging methodologically from neural networks to Bayesian methods, covering both

the acquisition of perceptual (surface) features and conceptual (underlying relational,

or knowledge-based) features. We begin our overview with low-level neural network

models of perceptual feature learning, and proceed to describing higher-level Bayesian

methods and computational models of conceptual feature learning.

Kruschke (1992) model perceptual feature acquisition using a neural network which

learns to weigh features based on their utility for concept categorization. The model

is based on an exemplar categorization model and assumes that features emerge as a

result of concept categorization. The original model was constructed for perceptual
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stimuli represented as points in a feature space and has subsequently been extended to

account for binary featural representations of stimuli indicating the presence or absence

of particular features (Lee and Navarro, 2002).

Modeling feature learning purely based on categorization performance does not cap-

ture the fact that statistical co-occurrence patterns of features across objects also play

an important role in feature acquisition. Goldstone (2003) and Goldstone et al. (2008)

develop a neural network model for perceptual feature learning. In addition to the con-

ceptual bias (features should explain category membership of concepts) their model

includes a distributional bias: features that are spatially close in the stimulus (e.g., ad-

jacent pixels) should receive similar feature values.

Both models discussed above learn features by re-weighting an existing inventory of

features. Fahlman and Lebiere (1990) propose a method for incrementally changing

the structure of a neural network such that additional nodes can be added to account for

increasing complexity in the input data. Love et al. (2004) use this method to model

incremental category learning.

A similar idea of adaptively increasing model complexity with the complexity of the

structure in the input has been put forward in the form of non-parametric Bayesian

models. A series of rational (aka ideal learner) Bayesian models have been proposed

which infer perceptual features from raw pixel input, and account for a variety of cog-

nitive phenomena in human concept learning such as the influence of categorization on

feature creation and incremental learning (Austerweil and Griffiths, 2009, 2011, 2013).

These models formalize feature learning as non-parametric Bayesian inference of the

simplest set of features that explains the input stimuli. They incorporate a simplicity-

encouraging prior over features in form of the Indian Buffet Process (IBP).

The models discussed so far largely focus on the acquisition of perceptual features for

a set of visual concepts. The stimuli themselves tend to be limited in their feature com-

plexity (e.g., 2-dimensional line drawings with black or white pixels, or 3-dimensional

computer rendered gray scale images). They do not resemble the visual input a child

encounters, namely cluttered scenes with a potentially unbounded number of objects

of varying complexity.

Beyond computational models of visual feature learning, a limited number of models

for learning conceptual features have been proposed as well. Austerweil and Grif-

fiths (2011) apply their IBP-based models discussed above to adult acquisition of con-
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ceptual categories: They present participants with descriptions of instances of novel

species present in a set of “Martian fossils”, and investigate the process with which

participants identify discriminating features for the species. While this work is con-

ceptually most similar to our goal of modeling conceptual feature learning, it focuses

on feature development in adults, who are equipped with substantial prior experience

with concept representations and categorization. The inherent limitations of labora-

tory experiments restrict the scope of their setup to a small number of concepts and

features. It is not clear how the results extend to a more naturalistic setting of learning

on a larger scale with potentially unlimited features.

Zeigenfuse and Lee (2010) present a Bayesian model of feature learning from a large

set of human-produced feature norms and similarity ratings for a set of domain-specific

concepts (e.g., animals). Their model extracts a subset of the input features that explain

the feature similarity ratings well. They assume an underlying feature learning process

that optimizes the distance of concepts in a representational space, where each concept

is represented by a weighted vector of features. Other work (Perfors et al., 2005)

investigated the development of features and structured domain knowledge and their

interaction in the context of concept acquisition in children. They develop a Bayesian

model which infers adequate domain-specific knowledge structure (e.g., hierarchical

vs flat) from a set of binary-featured object-feature matrices for the domains of food

and animal. Both models infer features from an already highly constrained feature set

(based on human produced features). We model the acquisition from noisy input data

in the form of transcribed child-directed speech.

Finally, our model is related to computational models of word learning. Young chil-

dren learn new nouns with a rapid pace, and it has been shown that knowledge about

correlating properties facilitates this process (Jones et al., 1991; Landau et al., 1998).

Various models have been proposed that explore the interplay of word learning and

category learning, comprising both connectionist (Colunga and Smith, 2005; Colunga

and Sims, 2011) as well as probabilistic approaches (Yu, 2005). See Section 2.2 for a

thorough review of computational models of word learning and their relation to con-

cept and category acquisition.

Experiment 5 in Section 6.3 explores the development of feature representations of

concepts in the form of thematically coherent clusters of words which change over

time in their nature and relevance, from child-directed language. We advance previous

work in three ways: First, we are interested in the development of conceptual features
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of living and non-living things. Secondly, we investigate the process of how young

children acquire features for basic level concepts. Finally, we model the acquisition

process in a more natural setting that previous work, based on the statistical regularities

in natural language input available to the child. To the best of our knowledge we

present the first large-scale computational study of conceptual development in children.

6.1.2 Diachronic Meaning Change of Words

We now turn to meaning development on a larger scale. We will use SCAN to track

and analyze how language changes over decades or centuries. We will investigate

diachronic low-level semantic change of the meaning of individual words.

Language is a dynamic system, constantly evolving and adapting to the needs of its

users and their environment (Aitchison, 2001). Words in all languages naturally exhibit

a range of senses whose distribution or prevalence varies according to the genre and

register of the discourse as well as its historical context. As an example, consider the

word cute which according to the Oxford English Dictionary (OED, Stevenson 2010)

first appeared in the early 18th century and originally meant clever or keen-witted.

By the late 19th century cute was used in the same sense as cunning. Today it mostly

refers to objects or people perceived as attractive, pretty or sweet. Another

example is the word mouse which initially was only used in the rodent sense. The

OED dates the computer pointing device sense of mouse to 1965. The latter sense

has become particularly dominant in recent decades due to the ever-increasing use of

computer technology.

The arrival of large-scale collections of historic texts (Davies, 2010) and online li-

braries such as the Internet Archive and Google Books have greatly facilitated compu-

tational investigations of language change. The ability to automatically detect how the

meaning of words evolves over time is potentially of significant value to lexicographic

and linguistic research but also to real world applications. Time-specific knowledge

would presumably render word meaning representations more accurate, and benefit

downstream tasks where semantic information is crucial. Examples include informa-

tion retrieval and question answering, where time-related information could increase

the precision of query disambiguation and document retrieval (e.g., by returning doc-

uments with newly created senses or filtering out documents with obsolete senses).
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6.1.2.1 Computational Models of Diachronic Meaning Change

Most work on diachronic language change has focused on detecting whether and to

what extent a word’s meaning changed (e.g., between two epochs) without identifying

word senses and how these vary over time. A variety of methods have been applied to

the task ranging from the use of statistical tests in order to detect significant changes

in the distribution of terms from two time periods (Popescu and Strapparava, 2013;

Cook and Stevenson, 2010), to training distributional similarity models on time slices

(Gulordava and Baroni, 2011; Sagi et al., 2009), and neural language models (Kim

et al., 2014; Kulkarni et al., 2015). Other work (Mihalcea and Nastase, 2012) takes

a supervised learning approach and predicts the time period to which a word belongs

given its surrounding context.

Bayesian models have been previously developed for various tasks in lexical seman-

tics (Brody and Lapata, 2009; Ó Séaghdha, 2010; Ritter et al., 2010) and word meaning

change detection is no exception. Using techniques from non-parametric topic model-

ing, Lau et al. (2012) induce word senses (aka topics) for a given target word over two

time periods. Novel senses are then are detected based on the discrepancy between

sense distributions in the two periods. Follow-up work (Cook et al., 2014; Lau et al.,

2014) further explores methods for how to best measure this sense discrepancy. Rather

than inferring word senses, Wijaya and Yeniterzi (2011) use a Topics-over-Time model

and k-means clustering to identify the periods during which selected words move from

one topic to another.

A non-Bayesian approach is put forward in Mitra et al. (2014, 2015) who adopt a

graph-based framework for representing word meaning (see Tahmasebi et al. (2011)

for a similar earlier proposal). In this model words correspond to nodes in a seman-

tic network and edges are drawn between words sharing contextual features (extracted

from a dependency parser). A graph is constructed for each time interval, and nodes

are clustered into senses with Chinese Whispers (Biemann, 2006), a randomized graph

clustering algorithm. By comparing the induced senses for each time slice and ob-

serving inter-cluster differences, their method can detect whether senses emerge or

disappear.

Our work draws ideas from dynamic topic modeling (Blei and Lafferty, 2006b) where

the evolution of topics is modeled via (smooth) changes in their associated distribu-

tions over the vocabulary. Although the dynamic component of our model is closely
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related to previous work in this area (Mimno et al., 2008), our model is specifically

constructed for capturing sense rather than topic change. Our approach is conceptually

similar to Lau et al. (2012). We also learn a joint sense representation for multiple time

slices. However, in our case the number of time slices in not restricted to two and we

explicitly model temporal dynamics. Like Mitra et al. (2014, 2015), we model how

senses change over time. In our model, temporal representations are not independent,

but influenced by their temporal neighbors, encouraging smooth change over time. We

therefore induce a global and consistent set of temporal representations for each word.

Our model is knowledge-lean (it does not make use of a parser) and language indepen-

dent (all that is needed is a time-stamped corpus and tools for basic pre-processing).

Contrary to Mitra et al. (2014, 2015), we do not treat the tasks of inferring a semantic

representation for words and their senses as two separate processes.

Our evaluation in Section 6.4 reveals that SCAN (a) induces temporal representations

which reflect word senses and their development over time, (b) is able to detect mean-

ing change between two time periods, and (c) is expressive enough to obtain useful

features for identifying the time interval in which a piece of text was written. Over-

all, our results indicate that an explicit model of temporal dynamics is advantageous

for tracking meaning change. Comparisons across evaluations and against a variety of

related systems show that despite not being designed with any particular task in mind,

our model performs competitively across the board.

6.2 A Dynamic Bayesian Model of Semantic Change

In this section we introduce SCAN, our dynamic Bayesian model of Semantic ChANge.

SCAN induces a globally coherent representation of meaning development of individ-

ual words over time3, comprising a set of time-specific word meaning representations.

We start by explaining the intuitions and assumptions underlying our model, and con-

tinue with a technical model description, before we describe an approximate learning

algorithm.

3Throughout the model description we use the term word to refer to target terms whose meaning
change we aim to model. This refers either to linguistic words in the diachronic language change
evaluation, or to mental concepts in the concept development study. Similarly, we use the term sense
throughout the model description, which will correspond either to word senses (of linguistic words) or
to feature types (of mental concepts).
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Intuition We create a SCAN model for an individual target word c which captures the

development of its meaning over time. The input to the model is a corpus of short text

snippets (or documents), each consisting of a mention of the target word c and its local

context w as a symmetric context window of±n words. Each snippet is annotated with

its corresponding time stamp. This corresponds to the age of the addressed child for

the cognitive development experiments, and the year of the document’s origin for the

diachronic meaning change experiments. Example input documents are displayed in

Tables 6.1 (page 183) and 6.4 (page 197).

Given such a set of input documents, how do we model word meaning and its temporal

dynamics? We represent the meaning of a word as a set of senses. Each sense captures

an internally coherent aspect of its meaning, and is characterized through a set of words

that are associated with that sense. Senses are further distinguished in terms of their

prevalence since not all meanings are equally common for each word at all times. We

assume that each input text snippet refers to exactly one sense. We formalize temporal

dynamics assuming a discrete set of contiguous time intervals. Given a target word

whose meaning development is to be tracked, our model infers a meaning representa-

tion for each time interval. We introduce dependencies between temporally adjacent

time-specific meaning representations so as to explicitly capture the gradual nature

of meaning change with respect to both sense prevalences and sense-characterizing

words.

The output of a SCAN model is a globally coherent set of time interval-specific word

representations comprising the prevalence and content of word senses over time. In-

dividual representations are inferred jointly, capturing meaning change as a smooth

process, and inducing a globally meaningful and coherent picture of word meaning.

Model Description We now describe SCAN more formally. The generative story of

our model is displayed in Figure 6.1a and its plate diagram representation can be found

in Figure 6.1b.

A SCAN model is parameterized with regard to the number of senses k ∈ [1...K] of the

target word c, and the length of time intervals ∆T which might be finely or coarsely

defined (e.g., spanning a month, a year, or a decade). We conflate all inputs originating

from the same time interval t ∈ [1...T ] and infer a temporal representation of the target

word per interval. We use v ∈ [1...V ] as an index over the vocabulary. A temporal
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(a) Generative story of SCAN.

Draw κφ ∼ Gamma(a,b)

for time interval t = 1..T do
Draw sense distribution φt |φ−t ,κφ ∼N (1

2(φ
t−1 +φt+1),κφ)

for sense k = 1..K do
Draw word distribution ψt,k|ψ−t ,κψ ∼N (1

2(ψ
t−1,k +ψt+1,k),κψ)

for document d = 1..D do
Draw sense zd ∼Mult(φt)

for context position i = 1..I do
Draw word wd,i ∼Mult(ψt,zd

)

(b) Plate diagram of SCAN.

wz z w z w

φt−1 φt
φt+1

κφa,b

ψt−1 ψt
ψt+1

κψ

I

Dt−1

I

Dt

I

Dt+1

K

Figure 6.1: Top (a): The generative story of SCAN. Observations (w) and latent la-

bels (z) are drawn from Multinomial distributions (Mult). Parameters for the multinomial

distributions are drawn from logistic normal distributions (N ). Bottom (b): The plate dia-

gram representation of SCAN for three time steps {t−1, t, t+1}. Constant parameters

are shown as dashed nodes, latent variables as clear nodes, and observed variables

as gray nodes.
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meaning representation of word c at each time t comprises:

• the relative prevalence of senses at that time, as a K-dimensional multinomial

distribution over senses φ
t , and

• a representation of each sense k at time t as a V -dimensional multinomial distri-

bution over the vocabulary ψt,k .

Intuitively, the temporal meaning representations are not independent of each other,

but develop dynamically over time, each depending on their temporal neighbors. We

encode this intuition into the prior distributions, embedding them into a time series

model and ‘tieing together’ the values of each individual multinomial parameter φ
t
k

and ψ
t,k
w with its temporal neighbors at times t−1 and t +1. We technically describe

this prior in Section 6.2.1.

The generative story of SCAN (Figure 6.1a) proceeds as follows. Each SCAN model

captures the meaning change of one given target word c. First, we draw a precision

parameter (κφ) from its prior Gamma distribution, which regulates the global extent of

sense prevalence change over time for target word c. For each time interval t we draw

parameters of a Multinomial distribution over senses from the logistic normal prior (φt ,

capturing each sense’s prevalence). For each time interval t and each sense k we draw

a set of Multinomial parameters over the vocabulary, from a separate logistic normal

prior (ψt,k, capturing each sense’s content). Next, we generate time-specific text snip-

pets (or documents). For each snippet d, we first observe its time stamp t, and generate

a sense from the time-specific Multinomial sense distribution φ
t . Finally, we draw

a fixed number of context words independently from the sense-specific Multinomial

distribution over words for time t, ψt,k.

6.2.1 The Time Series Prior

We define the prior of the SCAN model in a way that allows us to ‘tie’ Multinomial

parameterizations across neighboring time steps, i.e., to capture the smooth nature of

meaning change. The Dirichlet distribution is the most common choice of a prior

distribution in a model with Multinomial data-generating distributions due to mathe-

matical convenience. However, it is limited in the dependencies it can encode between

parameters. Instead we draw our multinomial parameters from the logistic normal dis-

tribution (Aitchison, 1982; Blei and Lafferty, 2006a), and embed these distributions
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in a time series model. We first describe the parameter-generating process, and then

explain how we embed the logistic normal prior distributions into a time series model.

The Logistic Normal Distribution. A draw from the logistic normal distribution con-

sists of:

(1) a draw of an n-dimensional random vector from the multivariate normal distri-

bution parameterized by mean vector µ and variance-covariance matrix Σ, x ∼
N (µ,Σ), and

(2) a mapping of the drawn parameters to the simplex through the logistic transfor-

mation θi = exp(xi)/∑i′ exp(xi′).

The logistic transformation ensures that θ is a valid set of multinomial parameters

(i.e., that 0≤ θi ≤ 1 ∀θi and ∑i θi = 1). The parameterization of the multivariate nor-

mal distribution (through mean vector µ and variance-covariance matrix Σ) allows to

encode structured prior knowledge, such as correlation of parameters (Blei and Laf-

ferty, 2006a). The distribution can also be straightforwardly integrated into time series

models (Blei and Lafferty, 2006b; Mimno et al., 2008), which is our goal here.

We follow the two-stage procedure explained above, and draw for each time t a K-

dimensional random vector from the logistic normal prior over the sense prevalence

distributions:

β∼N (µφ,Σφ), (6.1)

and deterministically compute the multinomial parameters φt through the logistic trans-

formation:

φ
t
k =

exp(βk)

∑k′ exp(βk′)
. (6.2)

Equivalently, for each time t we draw parameters independently for each sense-specific

multinomial distribution over the vocabulary:

γ∼N (µψ,Σψ)

ψ
t,k
v =

exp(γw)

∑v′ exp(γv′)
.

(6.3)

We assume that given a time t all individual sense prevalences φt
k, as well as all sense-

specific word probabilities ψ
t,k
v are independent of each other. Hence we define Σφ

and Σψ as diagonal matrices where the value along the diagonal will correspond to κφ

and κψ, respectively (see below). We assume zero mean vectors µφ = µψ = 0.
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Modeling temporal dynamics. We embed the logistic normal distributions in a dy-

namic model which captures the development of meaning through temporally local

dependencies between multinomial parameters, and encourages smooth change. We

model the dynamics of meaning development over time in SCAN through intrinsic

Gaussian Markov Random Fields (iGMRFs; Rue and Held 2005). This section pro-

vides a brief reminder of iGMRFs in the context of our model. Please refer to Section

3.2.3 for a more general introduction and motivation for their use as priors in Bayesian

models. An exhaustive introduction to GMRFs can be found in Rue and Held (2005)

(see also Vivalt (2014) for an accessible overview; for an application of iGMRFs to

topic models, see Mimno et al. (2008)).

Let φ = {φ1...φT} denote a T-dimensional random vector, where each φt might for

example correspond to the probability of a sense at time t.4 We define a prior which

encourages smooth change of parameters at neighboring times, in terms of a first-order

random walk on the line (graphically depicted as the chains of φ and ψ in Figure 6.1b).

Specifically, we define this prior as an intrinsic Gaussian Markov Random Field, which

allows us to model the change of adjacent parameters as drawn from a normal distri-

bution,5 e.g.:

∆φ
t ∼N

(
0,

1
κ

)
, (6.4)

where we assume zero mean and κ is the precision, i.e., the inverse of the variance.

iGMRFs are defined with respect to the parameter chains φ and ψk, respectively (Fig-

ure 6.1b); it is sparsely connected with only first-order dependencies which allows

for efficient inference. A second feature, which makes iGMRFs popular as priors

in Bayesian modeling, is the fact that they can be defined purely in terms of the lo-

cal changes between dependent (i.e., adjacent) variables, without the need to spec-

ify an overall mean of the model. The full conditionals explicitly capture these intu-

itions (cf. Section 3.2.3 for technical details):

φ
t |φ−t ,κ∼N

(1
2
(φt−1 +φt+1),

1
2κ

)
, (6.5)

for 1 < t < T − 1, where φ
−t is the vector φ except element φt and κ is a precision

parameter. The value of parameter φt is distributed normally, centered around the

mean of the values of its neighbors, without reference to a global mean. The precision
4This is the simplest case, modeling the development of one sense. In our model each φt is a K-

dimensional vector, specifying a probability distribution over K senses.
5In what follows we assume a zero mean and leave the diagonal variance-covariance matrix Σ im-

plicit.
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parameter κ controls the extent of variation: how tightly coupled are the neighboring

parameters? Or, in our case: how tightly coupled are temporally adjacent meaning

representations of a word c?

Hyperparameter Sampling. The hyperparameters κφ and κψ control the degree to

which prevailing senses and sense-specific word distributions are allowed to vary over

time. We estimate the value of κφ during inference, which allows us to model the

extent of temporal change in prevalence of senses individually for each target word.

We draw κφ from a conjugate Gamma prior κφ ∼Gamma(a,b) with shape parameter a

and rate parameter b. We do not infer the sense-word precision parameter κψ. Instead,

we fix it at a high value, triggering little variation of word distributions within senses.

This leads to individual senses being thematically consistent over time, making sure

that we track the development of senses that refer to the same aspect of a target word’s

meaning throughout.

In summary, given a corpus of D documents, we wish to infer the following latent

variables:

(1) sense assignments to documents {z}D,

(2) time-specific sense distributions {φ}T ,

(3) time- and sense-specific word distributions {ψ}T×K , and

(4) the sense precision parameter κφ.

The full posterior distribution over latent variables given the data w, parameters a,b,κψ,

and the choices of distributions described above factorizes as,

P(z,φ,ψ,κφ|w,κψ,a,b)

= P(κφ|a,b)P(φ|κφ)P(ψ|κψ)P(z|φ)P(w|z,ψ)

∝ Ga(κφ;a,b)∏
t

[
N (φt |κφ)∏

k

[
N (ψt,k|κψ)

]
×

∏
d

[
Mul(z|φt)∏

i
Mul(wi|ψz,t)

]]
= Ga(κφ;a,b)∏

t

[
N (φt |κφ)∏

k

[
N (ψt,k|κψ)

]
∏

d

[
φ

t
z ∏

i
ψ

z,t
wi

]]
,

(6.6)

where we use Ga to refer to the Gamma distribution, Mul to refer to the multinomial

distribution, and N to refer to the Logistic Normal distribution obeying the structural
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Algorithm 6 The Gibbs sampling algorithm for the SCAN model.
1: Input: model with randomly initialized parameters.

2: Output: posterior estimate of z,φ,ψ,κφ

3: repeat
4: for document d do . Sample sense assignments z

5: zd ∼ p(zd = k|w−,z−,φ,ψ) = φk,t ∗∏ f

(
ψ

k,t
f

)Nd
f

6: for time t do . Sample sense parameters φ

7: βk ∼ p(β|z) ∝ ∏k

(
exp(βk

t )
∑k′ exp(βk′)

)Nk
t N
(

βk; ,κφ

)
8: φ

t = logistic-transform(β)

9: for time t do . Sample word parameters ψ

10: for sense k do

11: γw ∼ p(γ|z,w) ∝ ∏ f

(
exp(γk,t

v )

∑w′ exp(γk,t
w′ )

)Nk,t
f N

(
γ

k,t
v ;κψ

)
12: ψt,k = logistic-transform(γ)

13: . Sample precision parameter κφ

14: κφ ∼ p(κφ|φ)p(κφ;a,b) = Ga
(

KT
2 +a, 1

2 ∑t,s
(
φt

s− 1
2(φ

k
t−1 +φk

t+1))
)2

+b
)

15: until convergence

dependencies defined through the iGMRF prior.6

6.2.2 Batch Learning

We use a blocked Gibbs sampler for approximate inference, which repeatedly executes

three steps which alternately resample (a) document-sense assignments, (b) multino-

mial parameters from the logistic normal prior, and (c) the sense precision parameter

from a Gamma prior. The full sampling procedure is displayed in Algorithm 6.

The logistic normal prior is not conjugate to the multinomial distribution. This means

that the form of the conditional posterior distributions over logistic normal parame-

ters β and γ is unknown and cannot be sampled from straightforwardly. One way to

alleviate the problem of sampling from an unknown or very complex distribution are

auxiliary variable (or data augmentation) techniques. A set of auxiliary variables is

drawn from a well-known distribution (the uniform distribution in our case), and the

6In order to keep notation to a minimum, we use N as a shorthand for the Logistic Normal distribu-
tion, comprising both the draw from the normal distribution and the logistic transformation.
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parameters of interest are drawn conditioned on this set of auxiliary variables. This

cascade is carefully set up such that the auxiliary variables do not change the underly-

ing distributions of interest but only serve as helper variables to ease the computations.

We adapt the auxiliary variable sampler introduced in Mimno et al. (2008) to our model

(see also Groenewald and Mokgatlhe (2005)), and describe the three components of

our sampler in turn below.

Resampling document-sense assignments z. Our sampler first iterates over the

input documents d (each consisting of a set of words w), and resamples their sense

assignments under the current model parameters {φ}T and {ψ}K×T . Similarly to the

approach taken in Gibbs sampling for Dirichlet-Multinomial models, each document

label zd is individually resampled given the current values of all other variables in the

model.7 We sample from its posterior distribution, combining the prior distribution

over labels at time t with the likelihood of observing words w under this label at time t:

p(zd|w, t,φ,ψ) ∝ p
(

zd|t
)

p
(

w|t,zd
)

= φ
t
zd ∏

i
ψ

t,zd

wi

(6.7)

Resampling multinomial parameters φ and ψ. Next, we resample parameters {φ}T

and {ψ}K×T from the logistic normal prior, given the current sense assignments to the

data. We use the auxiliary variable sampler proposed in Mimno et al. (2008). An

illustration of the procedure is displayed in Figure 6.2.

Recall that Multinomial parameters φ (and ψ) are obtained by drawing vectors β (and γ)

from the MVN and subsequently mapping them to the simplex. The parameter vec-

tors β and γ are resampled independently and component-wise, and are subsequently

re-normalized to yield the valid multinomial parameters φ and ψ. Intuitively, we will

sample a new value for each individual βt
k (and, equivalently, γ

t,k
w ) from a bounded,

weighted area (cf., Figure 6.2, center). The boundaries are determined by the current

assignments of target sense k to documents from target time t (or, equivalently for γ
t,k
w ,

observations of target words w under sense k and time t). The weights of different

values in the bounded area are determined by the iGMRF prior, triggering values to

7For a mathematical description of Gibbs sampling for Dirichlet-Multinomial models please refer to
Section 3.3.2.3 (pages 47 ff.).
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Figure 6.2: Schematic illustration of the process underlying the auxiliary variable sam-

pling scheme for logistic-normal distributed parameters. We sample a new value for

parameter β
t,new
k based on its old value (βt,old

k ), the number of times sense k was as-

signed to any document from time slice t, and the iGMRF prior.

be similar to their temporally neighboring values, with the degree of similarity (or per-

mitted flexibility) determined through the precision parameters κφ and κψ. We will

describe the resampling procedure for one component βt
k below, noting that the proce-

dure for γ
t,k
w follows the exact same reasoning.

We resample the prevalence parameter βt
k, capturing the probability of sense k at time t,

from a bounded weighted area. The boundaries of the weighted area are approximated

using a set of auxiliary variables. Indeed, this approximation is identical to the approx-

imation of the cumulative distribution function of a logistic distribution, which means

that we can proceed as follows.8 We draw an auxiliary variable for each document d

from target time t. The value is drawn uniformly from an interval with boundaries

depending on whether the document’s sense assignment zd corresponds to our target

sense k (case 1) or not (case 2):

ui ∼

unif
(
0, exp(βk)

∑k′ exp(βk′)

)
if zd = k

unif
( exp(βk)

∑k′ exp(βk′)
,1
)

otherwise.
(6.8)

The largest value drawn in the former case, uzd=k
max , will determine the lower bound of

the region from which a new value for βt
k will be drawn: the more documents at time t

are already assigned sense k, the higher the lower bound is expected to be. This is

illustrated through the swarm of violet sample points in Figure 6.2 (left). Conversely,

8Please consult Groenewald and Mokgatlhe (2005) and Mimno et al. (2008) for the mathematical de-
tails, which legitimate the approach, but are not necessary for an intuitive understanding of the method.
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the lowest value drawn in the latter set of random variables (if zd 6= k), uzd 6=k
min , will

determine the upper bound of the region: the more documents are assigned senses

other than the current target sense k, the lower the upper bound is expected to be

(cf., Figure 6.2 (blue samples on the right)).9

Given these values, the new value for βt
k is drawn from the area bounded by,

log

(
∑k′ 6=k exp(βt

k)
)

uzd=k
max

1−uzd=k
max

< β
t
k < log

(
∑k′ 6=k exp(βt

k)
)

uzd 6=k
min

1−uzd 6=k
min

. (6.9)

The area within the boundaries is weighted with respect to the prior iGMRF as defined

above (Equation 6.5). We thus draw the new value of βt
k from a truncated normal

distribution, with mean averaged over all dependent (i.e., adjacent) parameter values,

and precision determined by κφ. The normal distribution is truncated at the bounds

defined above. Finally, we deterministically update the parameter vector φ
t given the

new value βt
k using the logistic transformation.

To sum up, the resampled value of each individual βt
k is determined by (a) the impor-

tance of sense k from the current sense assignments to documents from time t; and

(b) the extent to which any new value agrees with the temporal coherence constraint

imposed by the iGMRF prior.

Resampling the precision parameter κφ. Finally, we periodically resample the

sense precision parameter κφ from its posterior distribution

p(κφ|φ,a,b) ∝ ∏
t

∏
k

N (φt
k|κ

φ)×Ga(κφ;a,b)

∝ ∏
t

∏
k

N (φt
k|

1
2
(φt−1

k +φ
t+1
k ),

1
2κφ

)×κφ
a−1 exp[−κφb],

(6.10)

which is itself a Gamma distribution with parameters:

κ
φ|{φ}t ,a,b∼ Ga

(
KT
2

+a,
∑t,k

(
φt

k−
1
2(φ

t−1
k +φ

t+1
k )

)2

2
+b

)
(6.11)

Intuitively, this represents the prior shifted by half the number of observations and half

the sum of squared divergences from the mean.

This section presented the technical details of SCAN, and derived a blocked Gibbs sam-

pler for approximate learning. In the remainder of the chapter, we apply our model to
9Mimno et al. (2008) explain various ways to make this procedure more efficient. We use these

methods in our implementation, and refer the interested reader to their paper for additional details.
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age (y-mm) utterance

1-01 day pajamas pajamas bed yawn stretch touch

1-05 bed brush brush bed brush teeth tooth

2-00 sleep tire book bed bed sit fall

2-06 snore under gentle bed sweet dream silly

3-00 wake early play bed awful mess upstairs

1-01 bottle bottle apple apple apple apple apple

1-05 color around red apple green pea yellow

2-00 eat apple red apple mm nice first

2-07 apple cut quarter apple seed pip core

3-00 thing type fruit apple pear orange share

Table 6.1: Examples of child-directed utterances for the target concepts bed and ap-

ple from the CHILDES corpus (after removal of stopwords and low frequency terms),

together with the age of the addressed child.

two phenomena of meaning change: the development of featural concept representa-

tions in children (Section 6.3), and diachronic change of word meaning (Section 6.4).

6.3 Experiment 5: Development of Concept Represen-

tations in Infants

Children learn the meaning of concepts over time, and acquire increasingly nuanced

and complex representations. We reviewed prior research in support of this claim in

Section 6.1.1. To the best of our knowledge, we present the first computational in-

vestigation of this phenomenon at scale, modeling the development of representations

comprising a broad variety of features for a large number of concepts. We model

the development of concept representations by exposing SCAN, as introduced in Sec-

tion 6.2, to a corpus of child-directed language.

We learn SCAN models for individual concepts (aka basic level categories such as dog,

chair, or ball) from sets of input stimuli in the form of short child-directed text snip-

pets comprising a mention of the target concept embedded in local context. Example

documents are shown in Table 6.1. We model temporal meaning representations as a
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Full Thomas

number of children 21 1

age range (y;mm) 0;11 – 4;11 2;00 – 4;11

number of utterances 129,958 45,081

Table 6.2: Details on the full corpus and the Thomas corpus. Note that the full corpus

includes the Thomas corpus.

set of feature types. Our model captures (a) the internal development of feature types

over time (for example a color feature type may contain increasingly nuanced color

representations); and (b) the development of their relative importance (for example

relational associations containing travel-related features may emerge over time in re-

lation to cars or trains, gaining importance in relation to their perceivable features and

leading to a more diverse concept representation).

In contrast to Chapters 4 and 5, which investigated the acquisition and representations

of superordinate level categories, here we use our dynamic Bayesian model to study

the meaning development of basic level categories (Rosch, 1978) in young infants. Our

corpora comprise language directed to children from their first word onset (one year)

up to about five years of age, and thus cover the initial phase of linguistic development.

Basic level categories are used most frequently as labels by caretakers, and are the first

categories children learn to distinguish (Rosch, 1978). Furthermore, basic level objects

tend to be associated with a single word. Like in the previous models and experiments

in this thesis, we treat a linguistic mention of a word referring to a target concept as an

observation of the target concept itself, and its local context as the concept’s features.

We train one SCAN model per word (or concept) of interest.

The experiments presented in the following sections are designed to investigate quan-

titatively (Section 6.3.1) and qualitatively (Section 6.3.2) whether the representations

that SCAN induces from corpora of child-directed language reflect characteristics of

concept development in infants.

Data In order to capture change of meaning representations in children over time,

we require longitudinal input data, i.e., (a) frequent recordings of language directed to

the child (in order to learn time-specific meaning representations), and (b) recordings

spanning a significant temporal period (in order to capture the development of these
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representations). In fact, the corpus used in the cognitive experiments in Chapter 5,

derived from the CHILDES database of child-related speech (MacWhinney, 2000),

was constructed with these desiderata in mind. The corpus is described in detail in

Section 5.4 (page 145). From this underlying data set, we create two corpora of input

stimuli for our experiments: one corpus conflates the data from the four sub-corpora

(comprising input to 21 children). The other corpus contains only the Thomas cor-

pus (Lieven et al., 2009), the largest longitudinal collection of input specific to one

individual child. These two corpora allow us to investigate whether conflating data for

many children, as opposed to data comprising input to only one child, has an influence

on the model output. Details on the size and coverage of the corpora can be found in

Table 6.2.

From each of the two data sets described above, we created concept-specific input

for our SCAN model. We trained models for a set of 30 concepts, which are listed

in Appendix C.1. The majority of this set (21 words) was taken from the data set

of concepts of living and non-living things used in the evaluations in the preceding

chapters (McRae et al., 2005; Vinson and Vigliocco, 2008), and described in detail in

Section 4.4.1 (p. 80). We selected nouns based on a sufficient number of mentions

in the child-directed data. In addition, we added verbs, superordinate categories and

adjectives as target concepts, again selected based on their frequency in the data. The

target concept-specific input corpora consist of short text snippets, containing a men-

tion of the target concept surrounded by a symmetric window of n =±3 content words

(we remove stop words and low frequency terms). Each input is annotated with the age

(in months) of the child being spoken to. Table 6.1 shows examples of input documents

for the target concepts bed and apple.

6.3.1 Development of Feature Complexity

This experiment investigates the development of the complexity of concept-specific

feature representations over time. We approximate the complexity of inferred featural

representations through the age-of-acquisition (aoa) rating of their associated features

(i.e., context words). Age-of-acquisition ratings measure the age at which a person

understands the meaning of a word (but does not necessarily use it). Large databases of

age-of-acquisition ratings exist that cover more than 30,000 English words (Kuperman

et al., 2012). Age-of-acquisition has been shown to correlate with other measures
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of complexity, such as word length, concreteness, or imageability (Kuperman et al.,

2012). We quantify the development of temporal interval-specific complexity of learnt

representations as a function of the aoa scores of their associated features. We provide

a qualitative analysis of the development of concept representations in Section 6.3.2.

We compare the difference in development of meaning representations between two

models, trained on the respective corpora introduced above: The full corpus compris-

ing input to 21 children, and the Thomas corpus containing input to a single child.

This allows us to study whether the same pattern of feature development emerges for

individuals, as well as across children.

Models and parameters We create a SCAN model for each of the 30 concepts in

our set of targets. SCAN models are parameterized with respect to the number of

feature types (senses in the model description) they support, and with respect to the

size of the temporal intervals. We set the number of feature types to K = 5, and the

size of temporal intervals to ∆T = 3 months. We set the word-feature type precision

parameter κψ = 50 (triggering thematically stable feature types which refer to the same

aspect of meaning across temporal intervals). We adjusted these parameters to the size

and characteristics of our datasets using a small set of development concepts, but did

not tune them exhaustively.

Method For each of the 30 target concepts, c, we induce time-specific concept repre-

sentations as distributions over feature types gt , where each feature type is represented

as a distribution over features. We represent each induced feature type gt as the 10

features with highest probability under gt , f gt
n : n = [1...10]. Taken together for all

30 concepts, interval-specific feature sets comprise 1,500 context word token, and on

average around 370 context word types (i.e., distinct features). For each feature in this

set, we retrieve an age-of-acquisition rating aoa( f gt
n ) from Kuperman et al. (2012)’s

resource (which covers over 97% of the features in our data set).

We compute time interval t-specific complexity scores cmpt by averaging feature aoa-

scores over all target concepts c and all their time-specific feature types gt ,

cmpt =
1
F ∑

c
∑
gt

10

∑
n=1

aoa( f gt
n ), (6.12)

where F is the total number of feature tokens in the time-specific representations.
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(a) The full corpus
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Figure 6.3: Development of complexity of featural concept representation with increas-

ing age of children for the full corpus (top) and the Thomas corpus (bottom). Com-

plexity is quantified through averaged age-of-acquisition of concept-associated features

(cf., cmpt , equation (6.12)).

Results Figure 6.3 displays the development of age-of-acquisition scores over time

for both the full corpus (6.3a) and the child-specific Thomas corpus (6.3b). Across

corpora, the average age-of-acquisition rating of features consistently increases. The

trend is statistically significant (Spearman’s ρ = 0.91 (full corpus), ρ = 0.83 (Thomas

corpus); p < 0.002). Overall, the trend is more stable for the full corpus.

Note that SCAN is not a model of word learning – we use age-of-acquisition as a

way to quantify the complexity of concept representations. The absolute values of

the age-of-acquisition scores reported in Figures 6.3a and 6.3a do not correspond to

the age of the child. Our model does not learn what these words mean, but it learns

that they are features which are relevant to and representative of a concept. Based on
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repeatedly observed co-occurrences, a child may learn that certain words are associated

with certain concepts without having a clear representation of their meaning.

We provided quantitative support for the claim that our model learns concept repre-

sentations that increase in complexity over time, mirroring the way in which children

incrementally and dynamically acquire increasingly nuanced conceptual knowledge

about the world. In the next experiment, we qualitatively analyze representations of a

subset of these concepts as learnt by our model, and their qualitative dynamic devel-

opment.

6.3.2 Qualitative Analysis of Feature Development

We present qualitative output of our SCAN models trained on a selection of target

concepts, using the same set of models parameter settings as in the previous exper-

iment. We compare differences in the development of meaning representations over

time when training on the full corpus and the Thomas corpus. While we expect that

the larger amount of training data available in the conflated corpus will trigger more

stable representations, we also assume that time-specific representations are highly

child-specific as they depend on the input and situations the child encounters. The

representations induced from the Thomas corpus should reflect this.

Figures 6.4 and 6.5 display the development of meaning representations as captured

by our model based on the full corpus of 21 children, and Figure 6.6 shows inferred

representations from the Thomas corpus. Additional model output for both corpora

is provided in Appendix C.2. Individual meaning representations are visualized as a

bar capturing the relative prevalence (p(k|t) = φt
k) of different feature types (color-

coded). One such visualization is displayed for each temporal interval, illustrating the

development of feature type prevalence over time. Each feature type is illustrated to

the right of the plot as the ten words w most highly associated with the feature type,

marginalizing over the time-specific representations
(

p(w|k) = ∑t ψ
t,k
w
)
.

Analysis of the full corpus Figure 6.4a shows the meaning development of the con-

cept train. Initially thematically rather unspecific feature type (violet) is prevalent.

Over time features relating to train journey (pink; including words like {ticket, sta-

tion, wait}), and location (orange; {bridge, track}) increase in importance, leading
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(a) Target concept train

0;11 1;02 1;05 1;08 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;08 4;11
age (year;months)

train track drive down play
 dear man back over run 

train track play big bridge
 set noise build over engine 

train choo drive back play
 ride bye take engine big 

train station choo drive take
 stop wait  person ticket 

train play drive car take
 bring round back track set 

(b) Target concept car

0;11 1;02 1;05 1;08 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;08 4;11
age (year;months)

police car drive fire train
 play engine sit man back 

car play back big toy
 take tell happen wash book 

car red drive take yellow
 park blue ride box big 

car drive race green sit train
 yellow blue big red 

car down park police
 big road  over bridge drive 

(c) Target concept nose

0;11 1;02 1;05 1;18 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;08 4;11
age (year;months)

nose big red blow draw
 wipe eye yuck tell mouth 

nose wipe blow tissue run
 need play down dear bit 

nose bite eat smell ear
 big eye purdie pink nice 

nose eye mouth beep ear
 baby head big tickle stick 

nose big red eye hat green
 rudolph trunk cone elephant 

Figure 6.4: Visualization of feature development of the concepts train, car and nose

(top to bottom), based on the linguistic input to 21 children aged between 11 months

and 4 years and 11 months. Each bar shows the proportional prevalence of each fea-

ture type (color-coded) and is labeled with the start year of the respective time interval

(covering three months). Feature types are shown as the 10 most probable words to

the right of the corresponding plot.
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(a) Target concept box

0;11 1;02 1;05 1;08 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;08 4;11
age (year;months)

box egg break back lid need
 thing hold keep dear 

box  back empty big 
sit toy inside take open 

box back piece car play 
over bring thing train tripod 

box post letter car back big
 thing empty yellow take 

box green blue big baby 
hide red play crayon book 

(b) Target concept hand

0;11 1;02 1;05 1;08 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;08 4;11
age (year;months)

hand left wash big move
 finger dry foot rub soap 

hand wash stick hold 
wipe nice give clean dear pull 

hand wash wipe finger need
 eat touch down purdie face 

hand clap hold happy catch
 take over shake baby hurt 

hand hold down draw big
 paint blue color red over 

(c) Target concept hair

0;11 1;02 1;05 1;08 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;08 4;11
age (year;months)

hair long cut need short curl
 give girl brush nice 

hair pull mess hurt nice
 love big take elastic bit 

hair color blue blonde eye
 red brown head long wear 

hair brush wash comb nice
 bath clean morning need back 

hair cut wash need long
 bit barber nice head lot 

Figure 6.5: Additional model output from the conflated corpus comprising input to 21

children for the feature development of the concepts box, hand and hair (top to bottom).



6.3. Experiment 5: Development of Concept Representations in Infants 191

to a differentiation in meaning, and a more fine-grained representation of the concept

train.

The graph in Figure 6.4b presents the temporal representations of the concept car. Mir-

roring the initial meaning of train discussed above, initially incoherent and vaguely

play-related features dominate the representation (orange). Over time, features em-

phasizing conceptual associations increase in importance: the dark green and light

green feature types cover concepts related to the target concept car (such as {road,

police, bridge, engine}), leading to a more differentiated representation over time. The

pink feature type captures color features.

We show the meaning development for the concept nose in Figure 6.4c. The initially

prevalent pink feature type is very general comprising other bodyparts {eye, mouth} as

well as related actions {tickle, stick}. The orange and dark green feature types which

increase in prevalence over time focus on the cleaning-related associations of nose.

The light green feature type is animal-related and suggests a broadening of associations

to animals – featuring mentions of elephants and Rudolph (the reindeer).

The graph in Figure 6.5a presents the meaning development of the concept box. Once

more, the initially prevalent feature type (orange) is topically incoherent. Over time,

a post box association emerges (pink), as well as a feature type pertaining to egg

boxes (dark green), together capturing a wider variety of specific aspects related to the

concept nose.

Figure 6.5b presents the temporal representations of the concept hand. Initially the

meaning is represented predominantly through one prevalent feature type (pink) which

captures the general nature of speech directed to very small children ({clap, hold,

happy, baby...}). Over time this feature type decreases in prevalence, making room

for a washing-related feature type (orange/violet). The light green feature type relates

to painting and indicates a development of associations with hand-related actions.

Analysis of the Thomas corpus Figure 6.6a presents the development of the rep-

resentation of the concept bed. We can make out a feature type related to sleeping,

going-to-bed (pink) which is prevalent throughout. A separate feature type covers

the waking up aspect (orange). A reading-related feature type emerges from age of

about 2.5 years (light green) and increases in prevalence throughout. Like the rep-

resentations induced from the full corpus, the meaning representation becomes more
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(a) Target concept bed

2;00 2;03 2;06 2;09 3;00 3;03 3;06 3;09 4;00 4;03 4;06 4;09
age (year;months)

bed time home onto 
bath thing fall bin under hide 

night bed morning time sleep
 asleep back tire purdie early 

take upstairs teddy down bed
 purdie window kitten picture po 

bed sleep bath night before
 big upstairs milk drink nice 

bed read book sleep morning
 leave nice present sweet story 

(b) Target concept hair

2;00 2;03 2;06 2;09 3;00 3;03 3;06 3;09 4;00 4;03 4;06 4;09
age (year;months)

hair wash brush wet mess
 cut bit stick rinse need 

hair cut pull nice tire
 kiss cry granddad ear long 

brush hair blue yellow
 love color smart tooth bit sit 

hair long short sue mess
 blonde day girl head nice 

hair wash thank snip
 cut brown big nice love hat 

(c) Target concept box

2;00 2;03 2;06 2;09 3;00 3;03 3;06 3;09 4;00 4;03 4;06 4;09
age (year;months)

box post letter need nice
 big back christmas keep thing 

box car back train keep 
 lid pop thank apple down 

box post letter back nice
 play yellow empty toy big 

box empty smarties back blue
 chocolate sweet inside lid bring 

box big dear break 
egg thing toy wash lid old 

(d) Target concept apple

2;00 2;03 2;06 2;09 3;00 3;03 3;06 3;09 4;00 4;03 4;06 4;09
age (year;months)

apple tree green peel red 
eat nice big pear cut 

apple piece jeannine eat 
give call sweet man face boy 

apple eat piece big cheese 
nice cut finish drink wash 

pear apple banana strawberry
 grape eat fruit peach peel orange 

apple eat juice nice pear
 back truck tree box mm 

Figure 6.6: Development of meaning representations of the concepts bed, hair, box,

and apple (top to bottom). Representations are induced from the Thomas corpus cap-

turing development between the age of 2 years and 4 years 11.
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faceted over time.

The meaning development of the concept hair is displayed in the plot in Figure 6.6b.

A {washing, cleaning}-related aspect of meaning increases in prevalence towards

the end of the modeled period, suggesting a newly learnt association (dark green). The

orange and pink feature types reveal the effect of modeling meaning representations

based on input to only one child. Both refer to a particular person of Thomas’ envi-

ronment (his granddad and his friend Sue, respectively). For comparison, we show the

meaning development for the concept hair learnt from the full corpus in Figure 6.5c.

The learnt meaning aspects are more general.

The two bottom plots (Figures 6.6c and 6.6d) show the meaning development of con-

cepts box and apple, respectively. The pink feature type of box shows another instanti-

ation of individual differences in meaning representation, referring to smartie boxes.

This type did not emerge from the model trained on the conflated data. For the word

apple (Figure 6.6d) different aspects of its meaning clearly emerge: one corresponding

to an apple as food (violet), one corresponding to its category fruit (pink), as well as

an aspect corresponding to its natural origin (dark green).

6.3.3 Discussion

Children’s representations of categories and concepts evolve over time until they reli-

ably resemble the meanings which are shared in the society they grow up in. In this set

of experiments we showed that dynamic development of concept meaning representa-

tions emerges from a computational model of concept acquisition from child-directed

language. The linguistic contexts in which concepts occur in child-directed speech

changes with increasing age of the child, and allows the acquisition of increasingly ac-

curate and diverse meaning representations. We quantified the increasing complexity

of concept representations by linking the induced feature types to the age of acquisition

of their representative terms. In addition, we qualitatively analyzed the development of

meaning representations. We observed the phenomenon of initial overgeneralization

(cf., concepts train and box in Figures 6.4a and 6.5a), as well as a shift from child-like

representations to more general representations (cf., concept hand in Figure 6.5b).

Recognizing that meaning development of concepts is highly individual and dependent

on the child’s personal environment (Neisser, 1987), we investigated concept develop-
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ment from input to a single child, and from input to multiple children. SCAN picks

up meaning change in both settings. We found that the representations learnt from a

single child’s corpus are more individual (cf., concept hair in Figure 6.6b); and that the

prevalence of these highly personalized aspects of meaning decrease over time, sug-

gesting a generalization process. In future work it would be desirable to compare the

individual differences in feature learning across multiple children. With the notable

exception of the Thomas corpus used throughout our experiments, however, currently

available data sets of speech directed to individual children are either sparse, providing

only infrequent samples of recordings and/or cover a shorter time period which makes

it difficult to detect feature development.

As in previous chapters of this thesis we model the acquisition and development of

conceptual knowledge based on the linguistic environment. Is the development of

concept representations induced by our model exclusively a by-product of conceptual

development in the child’s mind? Certainly there are factors beyond this development

which lead to a qualitative change of the input data the child receives. Examples in-

clude developments in the child’s behavior and abilities (e.g., the ability to use pens to

paint pictures will influence the linguistic contexts in which a child observes the word

hand) or changes in the child’s general environment (e.g., interacting with unknown

people or visiting novel places). Teasing apart changes in abilities and environment

from children’s conceptual development is challenging within our experimental setup,

and provides an interesting direction for future investigations.

The number of feature types associated with a concept is a parameter of our model, and

is constant over time. In this set of experiments we set this parameter to the same value

for all concepts. A more realistic model should be able to (a) induce the number of

feature types individually for each concept, and (b) within concepts allow this number

to vary over time. While in principle our models can capture such trends by setting the

number of feature types to a high value and letting the model decide to not make use

of all feature types, a more principled model should be able to adapt in complexity as

demanded by the data.

Our aim in this study was to show that the dynamic development of featural concept

representations during language acquisition emerges in large-scale experiments based

on naturalistic child-directed language. However, we do not claim to fully capture

the meaning acquisition process with our model: Modeling featural development from

linguistic input remains agnostic about pre-linguistic feature learning, e.g., from statis-
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tical regularities in visual input (Mervis, 1987; Younger and Fearing, 2000). For exam-

ple, awareness of basic object properties, such as object permanence has been shown

in 7 months old children (Baillargeon, 1987). Pre-linguistic development presum-

ably influences subsequent language-based feature learning. Furthermore, by training

concept-specific models, we assume that the learner has established an a priori one-

to-one word-concept mapping. This assumption is crude because one word can map

to a variety of concepts and vice versa. Furthermore, concept to word mappings are

themselves learnt by children around the same time as conceptual representations are

acquired (see our discussion in Section 2.1). We ignore information from the visual

or pragmatic input available to the child, and our corpora only capture snapshots of

specific situations the child encounters.

Despite these limitations, our text-based approach allows us to investigate the develop-

ment of a broad class of features for a variety of concepts – their coverage being only

restricted by the thematic variety in the corpus. Besides, previous analyses showed that

language encodes a variety of information of other (e.g., visual) modalities, and that

child-directed speech particularly often refers to perceivable properties of basic-level

categories (Riordan and Jones, 2011; Callanan, 1990). We showed that patterns of

child featural development identified in the literature emerge from our Bayesian mod-

els based on statistical regularities in the linguistic input to the child. In addition to

incremental category learning (Chapter 4) and joint acquisition of categories and fea-

tures (Chapter 5) the phenomenon of dynamic meaning acquisition can be successfully

captured with a Bayesian model trained on corpora of child-directed language.

6.4 Experiment 6: Development of Word Meaning

This section evaluates SCAN’s ability to capture phenomena related to diachronic

meaning change. Evaluation of models which detect meaning change is fraught with

difficulties. There is no standard set of words which have undergone meaning change

or benchmark corpus which represents a variety of time intervals and genres, and is

thematically consistent. Previous work has generally focused on a few hand-selected

words and models were evaluated qualitatively by inspecting their output, or the extent

to which they can detect meaning changes from two time periods. For example, Cook

et al. (2014) manually identify 13 target words which undergo meaning change in a

focus corpus with respect to a reference corpus (both news text). They then assess how
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their models fare at learning sense differences for these targets compared to distractors

which did not undergo meaning change. They also underline the importance of using

thematically comparable reference and focus corpora to avoid spurious differences in

word representations.

We evaluate our model’s ability to detect and quantify meaning change across several

time intervals (not just two). Instead of relying on a few hand-selected target words,

we use larger sets sampled from our learning corpus or found to undergo meaning

change in a judgment elicitation study (Gulordava and Baroni 2011, Section 6.4.2). In

addition, we adopt the evaluation paradigm of (Mitra et al. 2014, Section 6.4.3) and

validate our findings against WordNet. Finally, we apply our model to the recently es-

tablished SemEval-2015 diachronic text evaluation subtasks (Popescu and Strapparava

2015, Section 6.4.4). In order to present a consistent set of experiments, we use our

own corpus throughout which covers a wider range of time intervals and is compiled

from a variety of genres and sources and is thus thematically coherent (and described

in detail below). Wherever possible, we compare against prior art, with the caveat that

the use of a different underlying corpus unavoidably influences the obtained semantic

representations.

Data The corpus described in the following underlies all experiments described in

this section. We created a DiAchronic TExt corpus (DATE) which collates documents

spanning years 1700–2010 from three sources: (a) the COHA corpus10 (Davies, 2010),

a large collection of texts from various genres covering the years 1810–2010; (b) the

training data provided by the DTE task11 organizers (see Section 6.4.4); and (c) the por-

tion of the CLMET3.012 corpus (Diller et al., 2011) corresponding to the period 1710–

1810 (which is not covered by the COHA corpus and thus underrepresented in our

training data). CLMET3.0 contains texts representative of a range of genres including

narrative fiction, drama, letters, and was collected from various online archives. Ta-

ble 6.3 provides details on the size of our corpus. Documents were clustered by their

year of publication as indicated in the original corpora. In the CLMET3.0 corpus, oc-

casionally a range of years would be provided. In this case we used the final year of the

range. We tokenized, lemmatized, and part of speech tagged DATE using the NLTK

(Bird et al., 2009). We removed stopwords and function words. After preprocessing,

10http://corpus.byu.edu/coha/
11http://alt.qcri.org/semeval2015/task7/index.php?id=data-and-tools
12http://www.kuleuven.be/~u0044428/clmet3_0.htm

http://corpus.byu.edu/coha/
http://alt.qcri.org/semeval2015/task7/index.php?id=data-and-tools
http://www.kuleuven.be/~u0044428/clmet3_0.htm
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Corpus years covered #words

COHA 1810–2009 142,587,656

DTE 1700–2010 124,771

CLMET3.0 1710–1810 4,531,505

Table 6.3: Size and coverage of our three training corpora (after pre-processing).

year text snippet

1700 ambassador emperor treat peace king power enlarge english slave dominion condition

1838 sharp listen noble school awaken power mind exercise wit head house

1867 drainage wit rapidity flow water power remove obstacle practice stream wend

1989 governmental action individual equal power preponderant force energy direction govern

2010 invest million dollar building thermal power plant bid tide crisis brazilian

Table 6.4: Example text snippets for the target concept power from our DATE corpus

(after removal of stopwords and low frequency terms), together with the respective year

of origin.

we extracted target word-specific input corpora for our models. These consisted of

mentions of a target c and its surrounding context, a symmetric window of ± 5 words.

Example documents for the target word power are displayed in Table 6.4.

6.4.1 Temporal Dynamics

As discussed in Section 6.1.2.1, our model departs from previous approaches (e.g.,

Mitra et al. 2014) in that it learns globally consistent temporal representations for each

word. In order to assess whether temporal dependencies are indeed beneficial, we im-

plemented a stripped-down version of our model (SCAN-NOT) which does not have any

temporal dependencies between individual time steps (i.e., without the chain iGMRF

priors). Word meaning is still represented as senses and sense prevalence is modeled

as a distribution over senses for each time interval. However, time intervals are now

independent. Inference works as described in Section 6.2.2, without having to learn

the κ precision parameters.

Models and Parameters We compared the two models in terms of their predictive

power. We split the DATE corpus into a training period {d1...dt} of time slices 1
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through t and computed the likelihood p(dt+1|φt ,ψt) of the data at test time slice t +1,

under the parameters inferred for the previous time slice. The time slice size was set

to ∆T = 20 years. We set the number of senses to K = 8, the word precision parameter

κψ = 10, a high value which triggers individual senses to remain thematically consis-

tent over time. We set the initial sense precision parameter κφ = 4, and the Gamma

parameters a = 7 and b = 3. These parameters were optimized once on the develop-

ment data used for the task-based evaluation discussed in Section 6.4.4. Unless other-

wise specified all experiments reported in this section use these values. No parameters

were tuned on the test set for any task. In all experiments we ran the Gibbs sampler for

1,000 iterations, and resampled κφ after every 50 iterations, starting from iteration 150.

We report results based on the final state of the sampler throughout. We randomly se-

lected 50 mid-frequency target concepts from a larger set of target concepts described

in Section 6.4.4. Predictive log-likelihood scores were averaged across concepts and

were calculated as the average under 10 parameter samples {φt ,ψt} from the trained

models.

Results Figure 6.7 displays predictive log-likelihood scores for four test time inter-

vals. SCAN outperforms its stripped-down version throughout (higher is better). Since

the representations learnt by SCAN are influenced (or smoothed) by neighboring rep-

resentations, they overfit specific time intervals less which leads to better predictive

performance.

Figure 6.8 further illustrates how SCAN captures meaning change for the words band,

power, transport and bank. The sense distributions over time are shown as a sequence

of stacked histograms, senses themselves are color-coded (and enumerated) below, in

the same order as in the histograms. Each sense k is illustrated as the 10 words w

assigned the highest posterior probability, marginalizing over the time-specific repre-

sentations p(w|k) = ∑t ψ
t,k
w . Words representative of prevalent senses are highlighted

in bold face.

Figure 6.8a demonstrates that the model is able to capture various senses of the word

band, such as strip used for binding (yellow bars/number 3 in the figure) or

musical band (grey/1, orange/7). Our model predicts an increase in prevalence over

the modeled time period for both senses. This is corroborated by the OED which pro-

vides the majority of references for the binding strip sense for the 20th century and

dates the musical band sense to 1812. In addition a social band sense (violet/6,
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Figure 6.7: Predictive log likelihood of SCAN and a version without temporal depen-

dencies (SCAN-NOT) across various test time periods.

darkgreen/8; in the sense of bonding) emerges, which is present across time slices.

The sense colored brown/2 refers to the British Band, a group of native Americans

involved in the Black Hawk War in 1832, and the model indeed indicates a prevalence

of this sense around this time (see bars 1800–1840 in the figure).

For the word power (Figure 6.8b), three senses emerge: the institutional power

(colors gray/1, brown/2, pink/5, orange/7 in the figure), mental power (yellow/3,

lightgreen/4, darkgreen/8), and power as supply of energy (violet/6). The latter

is an example of a “sense birth” (Mitra et al., 2014): the sense was hardly present

before the mid-19th century. This is corroborated by the OED which dates the sense

to 1889, whereas the OED contains references to the remaining senses for the whole

modeled time period, as predicted by our model.

Similar trends of meaning change emerge for transport (Figure 6.8c). The plot in Fig-

ure 6.8d shows the sense development for the word bank. Although the well-known

senses river bank (brown/2, lightgreen/4) and monetary institution (rest) emerge

clearly, the overall sense pattern appears comparatively stable across intervals indicat-

ing that the meaning of the word has not changed much over time.

Besides tracking sense prevalence over time, our model can also detect changes within

individual senses. Because we are interested in tracking semantically stable senses,

we fixed the precision parameter κψ to a high value, to discourage too much variance

within each sense. Figure 6.9 illustrates how the energy sense of the word power

(violet/6 in Figure 6.8) has changed over time. Selected characteristic terms are high-

lighted in bold face. For example, the term “water” is initially prevalent, while the

term “steam” rises in prevalence towards the middle of the modeled period, and is
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(a) Target word band

1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

8 band play people time little 
call father day love boy

7 play band music time country day 
march military frequency jazz

6 little hand play land love 
time night speak strong name

5 little soldier leader time land 
arm hand country war indian

4 music play dance band hear
 time little evening stand house

3 black white hat broad gold 
wear hair band head rubber

2 indian little day horse time
 people meet chief leave war

1 play music hand hear sound
 march street air look strike

(b) Target word power

1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

8 power idea god hand mind
 body life time object nature

7 power nation world war country
 time government sir mean lord

6 power time company water 
force line electric plant day run

5 power government law congress
  executivepresident legislative constitution

4 love power life time woman
 heart god tell little day

3 mind power time life friend
 woman nature love world reason

2 power people law government 
mind call king time hand nature

1 power country government nation war
 increase world political people europe

(c) Target word transport

1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

8 road cost public railway transport 
rail average service bus time

7 ozone epa example section transport 
air policy region measure caa

6 time transport land public ship
 line water vessel london joy

5 air plane ship army day 
transport land look leave hand

4 time road worker union service 
public system industry air railway

3 air international worker plane association 
united union aircraft line president

2 troop ship day land army 
war send plane supply fleet

1 air joy love heart heaven 
time company eye hand smile

(d) Target word bank

1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

8 bank tell cashier teller money 
day ned president house city

7 bank note money deposit credit 
amount pay species issue bill

6 bank money national note government
 credit united time currency loan

5 bank dollar money note national president
 account director company little

4 river day opposite mile bank 
danube town left country shore

3 bank capital company stock rate 
national president fund city loan

2 river water stream foot 
mile tree stand reach little land

1 note bank money time tell 
leave hard day dollar account

Figure 6.8: Tracking meaning change for the words band, power, transport and bank

over 20-year time intervals between 1700 and 2010. Each bar shows the proportion of

each sense (color-coded) and is labeled with the start year of the respective time inter-

val. Senses are shown as the 10 most probable words, and particularly representative

words are highlighted for illustration.
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time line water water company company power power company power power power nuclear

line time power force power water company company power company plant nuclear power

power water line company time power force force force plant nuclear plant plant

water power time power force force water time plant electric electric time utility

force force force line water time electric water water time time company company

war war company time steam day day plant day force company utility time

run day run steam electric line time day time day run run people

equal house electric day run steam steam electric electric run utility electric energy

carry run steam electric day purchase line steam run water day cost cost

electric company day run plant run plant run line people force people run

Figure 6.9: Sense-internal temporal dynamics for the energy sense of the word power

(violet/6 in Figure 6.8). Columns show the ten most highly associated words for each

time interval for the period between 1700 and 2010 (ordered by decreasing probabil-

ity). We highlight how four terms characteristic of the sense develop over time ({water,

steam, plant, nuclear}).

superseded by the terms “plant” and “nuclear” towards the end.

6.4.2 Novel Word Sense Detection

In this section and the next we will explicitly evaluate the temporal representations

(i.e., probability distributions) induced by our model, and discuss its performance in

the context of previous work.

Large-scale evaluation of meaning change is notoriously difficult, and many evalua-

tions are based on small hand-annotated goldstandard data sets. Mitra et al. (2015),

bypass this issue by evaluating the output of their system against WordNet (Fellbaum,

1998a). Here, we consider their automatic evaluation of sense-births, i.e., the emer-

gence of novel senses. We assume that novel senses are detected at a focus time t2
whilst being compared to a reference time t1. WordNet is used to confirm that the

proposed novel sense is indeed distinct from all other induced senses for a given word.

Method Mitra et al.’s (2015) evaluation method presupposes a system which is able

to detect senses for a set of target words and identify which ones are novel. Our model

does not automatically yield novelty scores for the induced senses. However, Cook

et al. (2014) propose several ways to perform this task post-hoc. We use their relevance

score, which is based on the intuition that keywords (or collocations) which character-

ize the difference of a focus corpus from a reference corpus are indicative of word

sense novelty.
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We identify keywords for a focus corpus with respect to a reference corpus using

Kilgarriff’s (2009) method which is based on smoothed relative frequencies.13 The

novelty of an induced sense s can be then defined in terms of the aggregate keyword

probabilities given that sense (and focus time of interest):

rel(s) = ∑
w∈W

p(w|s, t2). (6.13)

where W is a keyword list and t2 the focus time. Cook et al. (2014) suggest a straight-

forward extrapolation from sense novelty to word novelty:

rel(c) = max
s

rel(s), (6.14)

where rel(c) is the highest novelty score assigned to any of the target word’s senses. A

high rel(c) score suggests that a word has undergone meaning change.

We obtained candidate terms and their associated novel senses from the DATE corpus,

using the relevance metric described above. The novel senses from the focus period

and all senses induced for the reference period, except for the one corresponding to the

novel sense, were passed on to Mitra et al.’s (2015) WordNet-based evaluator which

proceeds as follows. Firstly, each induced sense s is mapped to the WordNet synset u

with the maximum overlap:

synset(s) = argmax
u

overlap(s,u). (6.15)

Next, a predicted novel sense n is deemed truly novel if its mapped synset is distinct

from any synset mapped to a different induced sense:

∀s′synset(s′) 6= synset(n). (6.16)

Finally, overall precision is calculated as the fraction of sense-births confirmed by

WordNet over all birth-candidates proposed by the model. Like Mitra et al. (2015) we

only report results on target words for which all induced senses could be successfully

mapped to a synset.

Models and Parameters We obtained the broad set of target words used for the

task-based evaluation (in Section 6.4.4) and trained models on the DATE corpus. We

set the number of senses K = 4 following Mitra et al. (2015) who note that the Word-

Net mapper works best for words with a small number of senses, and the time intervals

to ∆T = 20 as in the previous experiment. We identified 200 words14 with highest nov-
13We set the smoothing parameter to n = 10, and like Cook et al. (2014) retrieve the top 1000 key-

words.
14This threshold was tuned on one reference-focus time pair.
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Figure 6.10: Precision results for the SCAN and SCAN-NOT models on the WordNet-

based novel sense detection. Results are shown for a selection of reference times (t1)

and focus times (t2).

elty score (Equation (6.14)) as sense birth candidates. We compared the performance

of the full SCAN model against SCAN-NOT which learns senses independently for time

intervals. We trained both models on the same data with identical parameters. For

SCAN-NOT, we must post-hoc identify corresponding senses across time intervals. We

used the Jensen-Shannon divergence between the reference- and focus time-specific

word distributions JS(p(w|s, t1)||p(w|s, t2)) and assigned each focus-time sense to the

sense with smallest divergence at reference time.

Results Figure 6.10 shows the performance of our models on the task of sense birth

detection. SCAN performs better than SCAN-NOT, underscoring the importance of

joint modeling of senses across time slices and incorporation of temporal dynamics.

Our accuracy scores are in the same ballpark as Mitra et al. (2014, 2015). Note, how-

ever that the scores are not directly comparable due to differences in training corpora,

focus and reference times, and candidate words. Mitra et al. (2015) use the larger

Google syntactic n-gram corpus, as well as richer linguistic information in terms of

syntactic dependencies. We show that our model which does not rely on syntactic

annotations performs competitively even when trained on smaller data. Table 6.5

(top) displays examples of words assigned highest novelty scores for the reference

period 1900–1919 and focus period 1980–1999, as induced by SCAN models.
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t1=1900–1919 t2=1980–1999

union soviet united american union european war civil military people liberty

dos system window disk pc operate program run computer de dos

entertainment television industry program time business people world president company

station radio station television local program network space tv broadcast air

t1=1960–1969 t2=1990–1999

environmental supra note law protection id agency impact policy factor federal

users computer window information software system wireless drive web building

virtual reality virtual computer center experience week community separation

disk hard disk drive program computer file store ram business embolden

Table 6.5: Example target terms (left) with novel senses (right) as identified by SCAN in

focus corpus t2 (when compared against reference corpus t1). Top: terms used in novel

sense detection study (Section 6.4.2). Bottom: terms from the Gulordava and Baroni

(2011) gold standard of word meaning change (Section 6.4.3).

6.4.3 Word Meaning Change

In this experiment we evaluate whether model induced temporal word representations

capture perceived word novelty. We adopt the evaluation framework (and data set)

introduced in Gulordava and Baroni (2011).15

Method Gulordava and Baroni (2011) do not model word senses directly; instead

they obtain distributional representations of words from the Google Books (bigram)

data for two time slices, namely the 1960s (reference corpus) and 1990s (focus cor-

pus). To detect change in meaning, they measure cosine similarity between the vector

representations of a target word in the reference and focus corpus. It is assumed that

low similarity indicates that a word has undergone meaning change. To evaluate the

output of their system, they created a test set of 100 target words (nouns, verbs, and

adjectives), and asked five annotators to rate each word with respect to its degree of

meaning change between the 1960s and the 1990s. The annotators used a 4-point

ordinal scale (0: no change, 1: almost no change, 2: somewhat change, 3: changed

significantly). Words were subsequently ranked according to the mean rating given by

the annotators. Inter-annotator agreement on the novel sense detection task was 0.51

15We thank Kristina Gulordava for sharing their evaluation data set of target words and human judg-
ments.
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system corpus Spearman’s ρ

Gulordava (2011) Google 0.386

SCAN DATE 0.377

SCAN-NOT DATE 0.255

frequency baseline DATE 0.325

Table 6.6: Spearman’s ρ rank correlations between system novelty rankings and the

human-produced ratings. All correlations are statistically significant (p < 0.02). Results

for SCAN and SCAN-NOT are averages over five trained models.

(pairwise Pearson correlation) and can be regarded as an upper bound on model per-

formance.

Models and Parameters We trained SCAN models for all words in Gulordava and

Baroni’s (2011) goldstandard. We used the DATE subcorpus covering years 1960

through 1999 partitioned by decade (∆T = 10). The first and last time interval were

defined as reference and focus time, respectively (t1=1960–1969, t2=1990–1999). As

in the previous experiment, a novelty score was assigned to each target word (using

Equation (6.14)). We computed Spearman’s ρ rank correlations between gold stan-

dard and model rankings (Gulordava and Baroni, 2011). We trained SCAN models

setting the number of senses to K = 8. We also trained SCAN-NOT models with identi-

cal parameters. We report results averaged over five independent parameter estimates.

Finally, as in Gulordava and Baroni (2011) we compare against a frequency baseline

which ranks words by their log relative frequency in the reference and focus corpus.

Results The results of this evaluation are shown in Table 6.6. As can be seen, SCAN

outperforms SCAN-NOT and the frequency baseline. For reference, we also report the

correlation coefficient obtained in Gulordava and Baroni (2011) but emphasize that

the scores are not directly comparable due to differences in training data: Gulordava

and Baroni (2011) use the Google bigrams corpus (which is much larger compared to

DATE). Table 6.5 (bottom) displays examples of words which achieved highest novelty

scores in this evaluation and their associated novel senses, as induced by SCAN models.
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6.4.4 Diachronic Text Classification

In the previous sections we demonstrated how SCAN captures meaning change be-

tween two periods. In this section, we assess our model on an extrinsic task which

relies on meaning representations spanning several time slices. We quantitatively eval-

uate our model on the SemEval-2015 benchmark data sets released as part of the Di-

achronic Text Evaluation exercise (Popescu and Strapparava 2015; DTE). In the fol-

lowing we first present the DTE subtasks, and then describe our experimental setup,

and systems used for comparison to our model.

SemEval DTE Tasks Diachronic text evaluation is an umbrella term used by the

SemEval-2015 organizers to represent three subtasks aiming to assess the performance

of computational methods used to identify when a piece of text was written. A sim-

ilar problem is tackled in Chambers (2012) who label documents with time stamps

whilst focusing on explicit time expressions and their discriminatory power. The Se-

mEval data consists of news snippets, which range between a few words and multi-

ple sentences. A set of training snippets, as well as gold-annotated development and

test data sets are provided. DTE subtasks 1 and 2 involve temporal classification:

given a news snippet and a set of non-overlapping time intervals covering the period

1700 through 2010, the system’s task is to select the interval corresponding to the snip-

pet’s year of origin. Temporal intervals are consecutive and constructed such that the

correct interval is centered around the actual year of origin. For both tasks temporal

intervals are created at three levels of granularity (fine, medium, and coarse).

Subtask 1 involves snippets which contain an explicit cue for time of origin. The

presence of a temporal cue was determined by the organizers by checking the entities’

informativeness in external resources. Consider the example below:

(6.17) President de Gaulle favors an independent European nuclear striking force

The mentions of French president de Gaulle and nuclear warfare suggest that the snip-

pet was written after the mid-1950s and indeed it was published in 1962. A hypotheti-

cal system would then have to decide amongst the following classes:

{1700–1702, 1703–1705, . . ., 1961–1963, . . ., 2012–2014}

{1699–1706, 1707–1713, . . ., 1959–1965, . . ., 2008–2014}

{1696–1708, 1709–1721, . . ., 1956–1968, . . ., 2008–2020}
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The first set of classes correspond to fine-grained intervals of 2-years, the second set

to medium-grained intervals of 6-years and the third set to coarse-grained intervals

of 12-years. For the snippet in example (6.17) classes 1961–1963, 1959–1965, and

1956–1968 are the correct ones.

Subtask 2 involves temporal classification of snippets which lack explicit temporal

cues, but contain implicit ones, e.g., as indicated by lexical choice or spelling. The

snippet in example (6.18) was published in 1891 and the spelling of to-day, which was

common up to the early 20th century, is an implicit cue:

(6.18) The local wheat market was not quite so strong to-day as yesterday.

Like in subtask 1, systems select a temporal interval from a set of contiguous time

intervals of differing granularity. For this task, which is admittedly harder, levels of

temporal granularity are coarser corresponding to 6-, 12- and 20-year intervals.

Participating SemEval Systems We compared our model against three other sys-

tems which participated in the SemEval task.16 AMBRA (Zampieri et al., 2015) adopts

a learning-to-rank modeling approach and uses several stylistic, grammatical, and lex-

ical features. IXA (Salaberri et al., 2015) uses a combination of approaches to deter-

mine the period of time in which a piece of news was written. This involves searching

for specific mentions of time within the text, searching for named entities present in

the text and then establishing their reference time by linking these to Wikipedia, using

Google n-grams, and linguistic features indicative of language change. Finally, UCD

(Szymanski and Lynch, 2015) employs SVMs for classification using a variety of in-

formative features (e.g., POS-tag n-grams, syntactic phrases), which were optimized

for the task through automatic feature selection.

Models and Parameters We trained our model for individual words and obtained

representations of their meaning for different points in time. Our set of target words

consisted of all nouns which occurred in the development data sets for DTE subtasks 1

and 2 as well as all verbs which occurred at least twice in this data set. After removing

infrequent words we were left with 883 words (out of 1,116). Target words were not

optimized with respect to the test data in any way; it is thus reasonable to expect better

performance with an adjusted set of words.
16We do not report results for the system USAAR which achieved close to 100% accuracy by search-

ing for the test snippets on the web, without performing any temporal inference.
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We set the model time interval to ∆T = 5 years and the number of senses per word

to K = 8. We also evaluated SCAN-NOT, the stripped-down version of SCAN, with

identical parameters. Both SCAN and SCAN-NOT predict the time of origin for a test

snippet as follows. We first detect mentions of target words in the snippet. Then, for

each mention c we construct a document, akin to the training documents, consisting

of c and its context w, the ±5 words surrounding c. Given {c,w}, we approximate a

distribution over time intervals as:

p(c)(t|w) ∝ p(c)(w|t)× p(c)(t). (6.19)

The superscript (c) denotes parameters from the word-specific model. We marginalize

over senses and assume a uniform distribution over time slices p(c)(t). Finally, we

combine the word-wise predictions into a final distribution p(t) = ∏c p(c)(t|,w), and

predict the time t with highest probability.

Supervised Classification We also apply our model in a supervised setting, i.e., by

extracting features for classifier prediction. Specifically, we trained a multiclass SVM

(Chang and Lin, 2011) on the training data provided by the SemEval organizers (for

DTE tasks 1 and 2). For each observed word within each snippet, we added as feature

its most likely sense k given t, the true time of origin:

argmax
k

p(c)(k|t). (6.20)

We also trained a multiclass SVM using character n-gram (n ∈ {1,2,3}) features in

addition to the model features. Szymanski and Lynch (2015) identified character n-

grams as the most predictive feature for temporal text classification using SVMs. Their

system (UCD) achieved the best published scores in DTE subtask 2. Following their

approach, we included all n-grams that were observed more than 20 times in the DTE

training data.

Results We employed two evaluation measures proposed by the DTE organizers.

These are precision p, i.e., the percentage of times a system has predicted the correct

time period. And accuracy acc which is more lenient, and penalizes system predic-

tions proportional to their distance from the true interval. We compute the p and acc

scores for our models using the evaluation script provided by the SemEval organiz-

ers. Table 6.7 summarizes our results for DTE subtasks 1 and 2. We compare SCAN
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Task 1

2 yr 6 yr 12 yr

acc p acc p acc p

Baseline .097 .010 .214 .017 .383 .046

SCAN-NOT .265 .086 .435 .139 .609 .169

SCAN .353 .049 .569 .112 .748 .206

IXA .187 .020 .375 .041 .557 .090

AMBRA .167 .037 .367 .071 .554 .074

SVM SCAN .192 .034 .417 .097 .545 .127

SVM SCAN+ngram .222 .030 .467 .079 .627 .142

Task 2

6 yr 12 yr 20 yr

acc p acc p acc p

Baseline .199 .025 .343 .047 .499 .057

SCAN-NOT .259 .041 .403 .056 .567 .098

SCAN .376 .053 .572 .091 .719 .135

IXA .261 .037 .428 .067 .622 .098

AMBRA .605 .143 .767 .143 .868 .292

UCD .759 .463 .846 .472 .910 .542

SVM SCAN .573 .331 .667 .368 .790 .428

SVM SCAN+ngram .747 .481 .821 .500 .897 .569

Table 6.7: Results on Diachronic Text Evaluation Tasks 1 and 2 for a random baseline,

our SCAN model, its stripped-down version without iGMRFs (SCAN-NOT), the SemEval

submissions (IXA, AMBRA and UCD), and SVMs trained with SCAN features (SVM

SCAN), and with additional character n-gram features (SVM SCAN+ngram). Results

are shown for three levels of granularity, a strict precision measure p, and a distance-

discounting measure acc.

against a baseline which selects a time interval at random17 averaged over five runs.

We also show results for a stripped-down version of our model without the iGMRFs

(SCAN-NOT) and for the systems which participated in SemEval.

17We recomputed the baseline scores for subtasks 1 and 2 due to inconsistencies in the results pro-
vided by the DTE organizers.
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For subtask 1, the two versions of SCAN outperform all SemEval systems across the

board. SCAN-NOT occasionally outperforms SCAN in the strict precision metric, how-

ever, the full SCAN model consistently achieves better accuracy scores which are more

representative since they factor in the proximity of the prediction to the true value. In

subtask 2, the UCD and SVM SCAN+ngram systems perform comparably. They both

use SVMs for the classification task, however our own model employs a less expres-

sive feature set based on SCAN and character n-grams, and does not take advantage of

feature selection which would presumably enhance performance. With the exception

of AMBRA, all other participating systems used external resources (such as Wikipedia

and Google n-grams); it is thus fair to assume they had access to at least as much train-

ing data as our SCAN model. Consequently, the gap in performance can not solely be

attributed to a difference in the size of the training data.

We also observe that IXA and SCAN, given identical class granularity, perform better

on subtask 1, while AMBRA and our own SVM-based systems exhibit the opposite

trend. The IXA system uses a combination of knowledge sources in order to determine

when a piece of news was written, including explicit mentions of temporal expressions

within the text, named entities, and linked information to those named entities from

Wikipedia. AMBRA on the other hand exploits more shallow stylistic, grammatical

and lexical features within the learning-to-rank paradigm. An interesting direction for

future work would be to investigate which features are most appropriate for different

DTE tasks. Overall, it is encouraging to see that the generic temporal word represen-

tations inferred by SCAN lead to competitively performing models on both temporal

classification tasks without any explicit tuning.

6.4.5 Discussion

We applied SCAN, a dynamic Bayesian model of sense development to the phenomenon

of diachronic word meaning change. Our model learns a coherent set of co-dependent

time-specific senses for individual words and their prevalence. Evaluation of the model

output showed that the learnt representations reflect (a) different senses of ambiguous

words (b) different kinds of meaning change (such as new senses being established),

and (c) connotational changes within senses. SCAN departs from previous work in that

it models temporal dynamics explicitly. We demonstrated that this feature yields more

general semantic representations as indicated by predictive log-likelihood and a variety
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of extrinsic evaluations. We also experimentally evaluated SCAN on novel sense de-

tection and the SemEval DTE task, where it performed on par with the best published

results, without any extensive feature engineering or task specific tuning.

In our experiments we used context as a bag of words. It would be interesting to

explore more systematically how different kinds of contexts (e.g., named entities, mul-

tiword expressions, verbs vs. nouns) influence the representations the model learns.

Furthermore, while SCAN captures the temporal dynamics of word senses, it cannot

do so for words themselves. Put differently, the model cannot identify whether a new

word is used which did not exist before, or that a word ceased to exist after a specific

point in time. A model internal way of detecting word (dis)appearance would be desir-

able, especially since new terms are continuously being introduced thanks to popular

culture and various new media sources.

6.5 Summary

This chapter introduced a novel Bayesian model of dynamic sense change, SCAN,

which infers a globally coherent representation of gradual meaning development of

individual words over time. We presented computational investigations of two phe-

nomena pertaining to the dynamic nature of meaning representations: Firstly, we mod-

eled meaning development ‘in the small’ by exploring how young children acquire the

meaning of concepts and how child-like conceptual representations develop over time

to resemble established adult-like representations. Secondly, we investigated meaning

change ‘in the large’, studying the process of diachronic change in word meaning over

decades and centuries.

In order to investigate the dynamic nature of child conceptual representations during

learning, we presented our model with child-directed language and analyzed the devel-

opment of featural representations of concepts over time. Our model learns from con-

cept mentions in their linguistic context, where we use the context as an approximation

of perceived features. We showed for a broad range of concepts and features that con-

cept representations increase in complexity, that phenomena such as diversification of

meaning representation emerge from our model. We can conclude that child-directed

language encodes the necessary structure and information that drives the acquisition

and development of concept meaning.



212 Chapter 6. Modeling Meaning Change over Time

In addition, we applied our model to historical data and modeled semantic change

of word meaning over time. In contrast to previous models we explicitly capture the

smooth and gradual nature of meaning change. We demonstrated the benefit of this

modeling decision both qualitatively through learnt time-specific word representations

that are intuitively interpretable, and quantitatively in a series of diverse experiments.

Our general model, developed without a particular semantic task in mind, performs

competitively with related models of word meaning change across evaluations.

Chapters 4 and 5 introduced cognitively plausible Bayesian models of category ac-

quisition together with incremental learning algorithms which approximate the on-line

nature of human learning. While in this chapter we proposed a cognitively motivated

model for child feature acquisition from natural language text, we used a batch learn-

ing algorithm which stores, and repeatedly iterates over, all the training data available.

In order to investigate the behavior of our model under more realistic constraints, it

would be desirable to incrementalize our Gibbs sampler for the SCAN model as well.

However, we leave this for future work.

Another interesting direction for future work concerns the application of our model to

monitoring meaning change in contexts beyond the cognitive and diachronic settings

studied in this chapter. We could apply our model to different text genres and levels of

temporal granularity. For example, we could work with Twitter data, an increasingly

popular source for opinion tracking, and use our model to identify short-term changes

in word meanings or connotations. Investigating feature acquisition and development

from multi-modal data (e.g., comprising visual and linguistic information) could be

another interesting continuation of this work.
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Conclusions

This chapter concludes the thesis with a summary of our main findings (Section 7.1),

and outlines future research directions (Section 7.2).

Humans constantly form and adapt knowledge about their complex environment. Cate-

gories provide an efficient way for storing and using knowledge about the world around

us, and are integral to how we perceive and interact with our surroundings. Given their

fundamental nature, questions of how categories are acquired, mentally represented,

and dynamically adapted have received much attention in prior research. Previous be-

havioral and computational research has mostly involved a small number of toy stimuli

(such as strings of binary numbers) with carefully controlled features. This stands in

sharp contrast to the complexity of the environment which categories are supposed to

capture. This thesis takes a step towards bridging this gap.

There is ample evidence that the acquisition of language and conceptual knowledge

are tightly intertwined problems which mutually guide and boost each other (Chap-

ter 2). Based on this insight we model the acquisition and representation of categories

based on natural language input. Specifically, we use corpora (including data sets of

transcribed child-directed speech from child-parent interactions) to represent the learn-

ing environment from which categories are acquired and from which structured repre-

sentations of categories are learnt. In our case, concept observations amount to their

linguistic mentions in corpora, and concept features are represented by the linguistic

context in which concepts occur. Based on these assumptions we developed three novel

Bayesian models of categorization-related aspects which we evaluated based on their

ability to acquire and represent categories comprising hundreds of concrete natural

213
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concepts.

Before summarizing our main findings, it is worth discussing the angle of model eval-

uation chosen throughout this thesis, and the limitations it entails. We began this thesis

noting that humans acquire knowledge with a remarkable efficiency under cognitive

constraints: humans learn incrementally, and are subject to memory constraints. In

addition, children learn categories ‘from scratch’. They (arguably) have no access to

prior category knowledge to start with, and cannot process the input they receive in

sophisticated ways (e.g., they cannot syntactically interpret language). These observa-

tions motivate two research questions:

1. Can we build cognitively motivated computational models that incorporate the

above constraints, and efficiently learn representations of high quality?

2. Do humans behave in ways that are consistent with the predictions made by the

models, beyond their ability to learn successfully (e.g., in terms of the kinds of

categories learnt, or the order in which they emerge)?

The models presented in this thesis were evaluated predominantly with respect to ques-

tion 1. We evaluated the output of our models against a human-produced gold standard

of categories, and human-produced plausibility judgments of the acquired featural rep-

resentations. We also compared our own models quantitatively against previous mod-

els of category and feature learning, and showed that they perform competitively across

evaluation tasks.

Our evaluations did not shed light on the question of whether the types of emerging

representations and their developmental process predicted by our models are consistent

with human behavior: Do children learn all and only the categories our model predicts?

Do intermediate category representations resemble those of children in the process of

category acquisition? The overarching goal of this thesis was to model the acquisition

and development of categories and features on a scale and representational complexity

approaching the characteristics of the environment from which humans learn. We are

not aware of a behavioral data set on this scale, and creating such a data set would be

a major undertaking on its own which we leave for future work.

Taken together, the results presented in this thesis show that natural language input

encodes the structure that drives human category learning, and that our Bayesian mod-

els are able to distill the relevant information from naturalistic data on a large scale.

We believe that our work takes a step towards understanding how humans utilize the
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complex structure of their environment to construct conceptual knowledge.

7.1 Main Findings

In the following we summarize the central findings of this work.

Category learning. Chapters 4 and 5 investigated the acquisition of a large number

of categories of concrete natural objects. We introduced two cognitively motivated

Bayesian models of child category acquisition, BayesCat and BCF. Our models are

knowledge-lean (they do not assume sophisticated linguistic processing abilities such

as parsing), they learn categories ‘from scratch’ (no explicit category knowledge is

instilled in the model in the beginning of the learning process), and they learn in an

unsupervised way. We combine our models with a cognitively motivated algorithm for

approximate inference (particle filtering), modeling category learning as an incremen-

tal process which integrates novel information as the data is observed. We find that our

models capture the human category learning process in various aspects. First, analysis

of the incremental learning algorithm revealed that it performs well under the time- and

memory constraints reminiscent of human learning. Secondly, our models learn plau-

sible categories when compared against a human-created gold standard. Thirdly, our

models simulate the incremental human learning process by learning representations

that consistently improve over time, and by acquiring representative features for cat-

egories together with the categories themselves. A previously proposed graph-based

model of incremental category learning was shown to qualitatively and quantitatively

fit human category learning less closely than our models. In summary, our results

provide further evidence to the claim that humans acquire categories by aggregating

information over time and by establishing representations which describe their envi-

ronment increasingly accurately.

Feature learning. Categories are not learnt in isolation. Chapter 5 computationally

investigates the acquisition of conceptual knowledge in a broader context. We intro-

duce BCF, a model which not only explains the acquisition of categories, but also

accounts for the emergence of structured featural representations. Our model cap-

tures the joint emergence of (1) categories themselves, (2) their feature representations
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structured into types of relevant properties, and (3) the association of feature types

with categories. To the best of our knowledge our work is the first to investigate these

phenomena jointly using large-scale naturalistic input. Note that we do not assume that

our models induce sets of necessary and sufficient features of concepts and categories

in the classical sense. Rather, we argue that the learnt representations capture relevant

associated information in the spirit of feature norms (McRae et al., 2005) which have

been shown to provide a valuable window into mental representations of concepts and

cateogries. Experimental results reveal the effectiveness of our model, and the ben-

efit of joint category and feature learning. The structured features acquired by our

model are judged more interpretable by humans, compared to feature types induced

by a model which learns categories and features in two separate processes, and is cog-

nitively less plausible in the sense that it requires the availability of a hand-crafted

set of rules based on substantial linguistic knowledge for feature detection. We also

showed that our model captures the joint emergence of categories and their structured

features in infants incrementally when exposed to corpora of child-directed language.

The results presented in this thesis suggest that cognitive models capture aspects of the

acquisition of complex category representations, and lead us to believe that the debate

of the emergence and representation of knowledge can be advanced through large-scale

computational investigations.

Meaning Development. A common assumption in previous models of knowledge

formation is that concepts are represented through a fixed set of features, however,

human conceptual representations can adapt to a changing environment. Chapter 6

presented SCAN, a dynamic Bayesian model of meaning change. Our model infers

time-specific representations of concept meaning, and accounts for the temporal dy-

namics underlying their development. We demonstrated the effectiveness of our model

on two tasks. We used SCAN to investigate word meaning change over centuries. Re-

sults show not only that the inferred time-specific word representations reveal intuitive

and temporally relevant aspects of word meaning, but also that our model performs

competitively across a range of semantic evaluation tasks when compared with pre-

viously developed task-specific systems. In addition, we modeled the development

of concept representations in young infants who form a representation of their envi-

ronment for the first time. We showed that the representations inferred by our model

resemble the increasing complexity of concept representations, a development that has

been observed in the behavioral studies with children. This thesis presents the first
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large-scale computational study of concept development in children that we are aware

of.

Natural language input. All experiments presented in this thesis are based on nat-

uralistic language input as a representation of the environment from which categories

and their representations are learnt. Does language capture the environmental struc-

ture that drives this acquisition process? In line with previous findings which suggest

that non-linguistic information from the environment is redundantly encoded in lan-

guage (Riordan and Jones, 2011), our experiments provide evidence in favor of a pos-

itive answer to this question. Our results furthermore support the view that language

influences category and feature learning: learners use statistical cues from word usage

in context to infer information about categories and their representation. Language

corpora are available in large quantities and for a variety of genres. We evaluated our

models in two settings: on large collections of general (news or encyclopedic) text,

and on corpora of transcribed child-directed speech. This allowed us to compare the

representations that our models can learn from data of a different quality (speech data

is much noisier than news text) and content (encyclopedic data is created with the

purpose of describing knowledge, whereas child-directed speech conveys knowledge

implicitly). Applying models to different kinds of corpora can help explain the influ-

ence of the input on the acquired representations for different groups of learners, and

can provide further insight into the cognitive development of children and adults.

Learning at scale. Bayesian models of category acquisition have primarily been

tested on small data sets of artificial stimuli (Anderson, 1991; Sanborn et al., 2006).

We showed that Bayesian models capture phenomena of category acquisition when

the scope of the learning problem scales both in terms of the number of categories

and concepts to be acquired, as well as in terms of their complexity. Our models

learn categories comprising hundreds of natural concepts from thousands of linguistic

stimuli. Our models learned categories of natural concrete concepts, which have rich

and structured features.

Bayesian modeling. This thesis used the framework of Bayesian modeling to in-

vestigate the acquisition of conceptual knowledge. We introduced three generative

models structured around the incremental, joint and dynamic nature of the acquisi-
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tion of categories and their features from naturalistic data. Bayesian models formalize

probabilistic inference on sets of observed data as a way of inductive learning. Eval-

uation showed that our models acquire categories which match those encoded in a

human-created gold standard, as well as rich and structured sets of relevant associated

features. At the same time our models capture the dynamic and incremental process

of category acquisition. Thus our results provide further evidence for the view of cate-

gory and feature learning as instances of statistical inductive inference. Taken together,

the experiments presented in this thesis lead us to conclude that Bayesian modeling is

a fruitful framework for testing hypotheses about category acquisition, structure, and

development.

7.2 Limitations and Directions for Future Research

The framework for modeling category acquisition and representation adopted in this

thesis involves a number of assumptions and simplifications. We start by pointing

out limitations that these assumptions introduce to our models, and discuss possible

improvements (Sections 7.2.1–7.2.2). We conclude with highlighting directions for

future research (Sections 7.2.3–7.2.5).

7.2.1 Non-parametric Models of Categorization

Non-parametric Bayesian models can adapt their structure to the complexity of the

input data. Previous models of category or features learning have used this feature,

allowing the model to adaptively increase in complexity if demanded by the struc-

ture of the input data (Anderson, 1991; Sanborn et al., 2006; Austerweil and Griffiths,

2013). In contrast, the models developed in this thesis are parametric, the number of

categories or the structure of feature representations is determined a priori. Beyond

inferring the number of categories, non-parametric extensions of our models could

capture other representational aspects of categories more realistically. In Chapter 5

we assumed that every category is represented by the same number of feature types. A

non-parametric model would lift this assumption. A non-parametric model of dynamic

meaning change (Chapter 6) could explicitly capture the emergence and disappearance

of featural aspects of concepts in child language acquisition; or the birth and death of

word senses in diachronic word meaning change.
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7.2.2 Integrating Word and Category Learning

The models presented in this thesis learn from collections of natural language stimuli

consisting of a target concept mention and its surrounding context. This input is based

on the rather bold assumption that the learner has solved a significant part of the word

learning problem: she has successfully mapped each target concept to a word. As

discussed in detail in Chapter 2, word learning itself constitutes a big challenge for

young infants. Our work remains agnostic about the fact that the meaning of words

itself needs to be acquired, and that knowledge about concepts and categories will help

tackle the word learning problem. A fully faithful model would consider the problems

of word and concept or category learning jointly. Extending our models to account for

this joint optimization will be a very interesting avenue for future research.

7.2.3 Representation of the Learning Environment

In this thesis we used natural language input as an approximation of the environment

from which categories and their representations are learnt. While we showed that the

linguistic environment is a useful approximation of the full multimodal input a learner

has access to, it is clear that this multimodal environment is not fully captured in lan-

guage. Computational models of word learning have been trained on multimodal input

data (albeit on smaller-scale problems; Frank et al. 2009; Yu and Smith 2007). Advan-

tageously, Bayesian models are flexible with respect to the input data they receive, so

we expect the application of our models to multimodal data to be a feasible avenue for

future work. Applying our models to such data sets would allow to compare the cate-

gory acquisition process and the acquired representations which emerge from models

trained on multimodal input against those emerging from purely linguistic data.

7.2.4 Learning Abstract Categories

Humans not only categorize the physical world around them, but also infer complex

representations of abstract categories and concepts such as POLITICAL (e.g., parlia-

ment, socialist), LEGAL (e.g., law, trial), or FEELINGS (e.g., mirth or embarrassment).

Lacking any physical realization, and hence perceivable properties, it is to be expected

that language plays a particularly important role in acquiring the meaning of such ab-

stract concepts (Wiemer-Hastings and Graesser, 2000). Using the models presented
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in this thesis to learn classes of abstract concepts and their structured representations

is an obvious extension. The SCAN model of dynamic meaning change (Chapter 6)

could also be used to infer the change of connotations with abstract political concepts

and ideas.

7.2.5 Category Acquisition across Languages and Cultures

One advantage of modeling knowledge acquisition from text is its generalizability

across languages. Linguistic corpora are available in large quantities for many lan-

guages, including corpora of child-directed speech. Since our models are knowledge

lean (i.e., they do not require sophisticated linguistic pre-processing tools), they are

straightforwardly applicable across languages. Do children acquire concepts and cat-

egories in different orders across cultures? Do the same categories emerge at all?

Especially in the context of abstract categorization (7.2.4), these questions provide

interesting potential for future research.



Appendix A

Derivation of the Gibbs Sampler for

Dirichlet-Multinomial Distributions

We first show how to analytically integrate over Multinomial parameters in Dirichlet-

Multinomial models. Afterwards, we derive the full-conditional update equations for

collapsed Gibbs sampling. We derive these equations for a model reminiscent of Naive

Bayes, which is the simplest and most similar model to the models introduced in this

thesis.

Naive Bayes is a model for classifying observations into a fixed and discrete set of

classes k = 1...K. It assumes observations represented as sets of independent features

(e.g., documents as sets of terms) d = [w1, ...,wN ],1 and assigns one class label zd to

each document. Naive Bayes assigns class labels to documents based on (a) the a priori

probability of a label z, and (b) the probability of the observed terms w given z. In terms

of the generative story, we first draw a label z from a Multinomial distribution over

labels Mult(θ). Afterwards we draw iid. terms wi from a class-specific Multinomial

distribution over terms Mult(φz). All Multinomial parameters are drawn from Dirichlet

priors:

θ∼ Dir(α) z∼Mult(θ)

φk ∼ Dir(β) wi ∼Mult(φz).

1Analogously, Naive Bayes can model observations of objects, or concepts, as sets of features.
Throughout this derivation we will use the document-term example and terminology.
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We start from the joint distribution,

p(d,z,θ,{φ}Z
1 ;α,β) =

Dir(θ|α)∏
z

Dir(φz|β)∏
d

Mult(zd|θ)∏
d

∏
i

Mult(wd
i |φzd)

(A.1)

We will first show how we analytically compute the integrals (getting rid of any explicit∫
in our formula).2 We start by integrating over θ and φ and re-grouping the factors in

equation (A.1) according to their dependencies on these parameters:

p(d,z;α,β) =
∫

θ

∫
φ

p(d,z,θ,{φ}Z
1 ;α,β)dθdφ

=
∫

θ

p(θ|α)∏
d

p(zd|θ)dθ ×
∫

φ
∏

z
p(φz|β)∏

d
∏

i
p(wd

i |φzd)dφ

=
∫

θ

p(θ|α)∏
d

p(zd|θ)dθ × ∏
z

∫
φz

p(φz|β)∏
d

∏
i

p(wd
i |φzd)dφz.

(A.2)

This shows that θ as well as all φz are independent under the model. We go through the

analytic integration for θ, the parameters of the multinomial probability distribution

over classes. The derivation for each φz (the distribution over terms v for a particular

class z) is identical.

∫
θ

p(θ|α)∏
d

p(zd|θ)dθ

=
∫

θ

Dir(θ|α)∏
d

Mult(zd|θ)dθ (A.3)

=
∫

θ

Γ(∑z α)

∏z Γ(α)∏
z

θ
α−1+nz
z dθ (A.4)

=
Γ(∑z α)

∏z Γ(α)

∏z Γ(nz +α)

Γ(∑z nz +α)

∫
θ

Γ(∑z nz +α)

∏z Γ(nz +α)∏
z

θ
α−1+nz
z dθ (A.5)

=
Γ(∑z α)

∏z Γ(α)

∏z Γ(nz +α)

Γ(∑z nz +α)
(A.6)

∝
∏z Γ(nz +α)

Γ(∑z nz +α)
, (A.7)

where we first, in eqn (A.3)–(A.4),write out the Dirichlet-Multinomial (from eqn 3.10,

3.11). In (A.5) we add factors (before and after the integral) which cancel out, i.e., do

not change the equation, but allow us to evaluate the terms inside the integral to 1

so that it can be dropped in (A.6). We finally drop all constants that do not depend

2This derivation is based on Carpenter (2010), who provides more detailed explanations.
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on z. We have now eliminated the integral, and represent θ implicitly as counts of

class-assignments (nz) to the data.

Following the same procedure we can derive for the set of {φz}

∏
z

∫
φz

p(φz|β)∏
d

∏
i

p(wd
i |φzd)dφz ∝ ∏

z

∏v Γ(nz
v +β)

Γ(∑v nz
v +β)

, (A.8)

where nz
v refers to the count of term w occurring with an document labeled with class

z.

In Gibbs sampling, we are interested in sampling each individual zi from its full

conditional distribution. We will now derive the full conditional distribution over all

possible values z j, and show that it has a mathematically simple form with an intuitive

explanation. We resample the class z j for document j given the class assignments to

all other documents z− j, the data d and hyperparameters. As shown in equation (3.29)

this distribution is proportional to the joint distribution derived above, so using (A.7)

and (A.8) we can write:

p(z j|z− j,d,α,β) ∝
∏z Γ(nz +α)

Γ(∑z nz +α)
×∏

z

∏v Γ(nz
v +β)

Γ(∑v nz
v +β)

. (A.9)

Since the probability p(z j) is conditioned on the current class assignments to all doc-

uments except j, the counts (nr and nr
v) regarding any class r 6= z j are not affected.

We split the terms which depend on z j (the value of the class assigned to document

j; terms 2 and 4 in A.10) from those which do not (i.e., concerning all classes r 6= z j;

terms 1 and 3 in A.10), and update only the counts regarding z j: nz j is incremented by

1 (because it is assigned to one additional document j) and the count of observing any

term v with class z j, (nz j

v ), is incremented by cv
j, the number of times term v occurs in

document j,

∏r 6=z Γ(n− j
r +α)

Γ(1+∑r n− j
r +α)

×Γ(n− j
z j +α+1)×

∏
r 6=z

∏v Γ(nr,− j
v +β)

Γ(∑v nr,− j
v +β)

×
∏v Γ(nz j,− j

v +β+ cv
j)

Γ(cv
j +∑v nz j,− j

v +β)
.

(A.10)

By definition, Γ(x+q) = Γ(x)∏
q
i=1(x+ i). We use this fact to pull apart terms 2 and 4

in (A.10) accordingly.3 This slightly complicates the equation but will eventually lead

3Or as a special case Γ(x+1) = xΓ(x). We need the general form for the class-term counts because
each count can be greater than one.
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to a significant simplification:

=
∏r 6=z Γ(n− j

r +α)

Γ(1+∑r n− j
r +α)

×Γ(n− j
z j +α)(n− j

z j +α)×

∏
r 6=z

∏v Γ(nr,− j
v +β)

Γ(∑v nr,− j
v +β)

× ∏v
(
Γ(nz j,− j

v +β)∏
c j

v
i=1(n

z j,− j
v +β+ i)

)
Γ(∑v nz j,− j

v +β)∏
c j

i=1(∑v nz j,− j
v +β+ i)

.

(A.11)

Here c j
v refers to the count of term v in document j, like above, and c j refers to the

total number of terms in j. Next, we conflate all Γ() functions over r 6= z j with those

over z j,

=
∏r Γ(n− j

r +α)

Γ(1+∑r n− j
r +α)

× (n− j
z j +α)×

∏
r

∏v Γ(nr,− j
v +β)

Γ(∑v nr,− j
v +β)

×∏v ∏
c j

v
i=1(n

z j,− j
v +β+ i)

∏
c j

i=1(∑v nz j,− j
v +β+ i)

.

(A.12)

All Γ() components are now constant with respect to any particular value for z j, such

that they can be dropped and we finally obtain:

p(z j|z− j,d,α,β) ∝ (n− j
z j +α)×∏v ∏

c j
v

i=1(n
z j,− j
v +β+ i)

∏
c j

i=1(∑v nz j,− j
v +β+ i)

. (A.13)

This is a very intuitive result: the probability that document j belongs to class z j is

proportional to the number of times class z j is assigned to any other document (first

term), times the number of times each individual term of document j was observed un-

der class z (second term). Term observation-wise increments i increase the likelihood

of terms under repeated observation: the second observation of a term with class z j is

intuitively more likely than observing it for the first time. All counts are smoothed by

the Dirichlet parameters, α and β, respectively.
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Instructions for Mechanical Turk

Experiments

We provide the instructions given in the Mechanical Turk experiments reported in Sec-

tions 5.3.3.

B.1 Feature Type Intrusion Task

Please Note

• You have to be a native speaker of English to take part in this study.

• In order to receive payment, you have to label and rate all feature sets, all fields are

required.

• You are welcome to complete as many hits as you like.

• Please do not forget to accept the HIT before you start working on it.

Informed Consent

This is a linguistic experiment performed at the University of Edinburgh. If you have any

questions about this study, feel free to contact Lea Frermann (l.frermann at ed.ac.uk). Partici-

pation in this research is voluntary. You have the right to withdraw from the experiment at any

time. The collected data will be used for research purposes only. Personal data will be kept

confidential and will not be shared with third parties.
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Personal Details Questionnaire

Please fill in the Personal Details questionnaire correctly, as otherwise you will not receive

payment.

1. Age:

2. Gender:

3. Please specify the country where you have learned your first language:

Instructions

Categories such as ANIMAL or FURNITURE are represented by example concepts (e.g., cat, dog,

bed, table) and can be described in terms of their features or attributes. For example ANIMALS

can be found in locations such as {forests, gardens, trees} or have visual properties, such as

{fur, legs, ears, feathers}. FURNITURE, on the other hand, is typically found in locations such

as {stores, living rooms, kitchens} and has external properties such as {seats, legs, patterns}.

Your Task

In this experiment, you will be presented with concepts (e.g., cat, dog) exemplifying a category

(e.g. ANIMAL) and different feature collections describing this category (e.g., {fur, legs, ears,

feathers}, {forests, gardens, trees}). One of the feature collections is not applicable to this

category. Your task is to detect the feature collection which does not belong to the category.

Please do not forget to accept the HIT before you start working on it.



B.2. Word Intrusion Task 227

B.2 Word Intrusion Task

Please Note

• You have to be a native speaker of English to take part in this study.
• In order to receive payment, you have to label and rate all feature sets, all fields are

required.
• You are welcome to complete as many hits as you like.
• Please do not forget to accept the HIT before you start working on it.

Informed Consent

This is a linguistic experiment performed at the University of Edinburgh. If you have any

questions about this study, feel free to contact Lea Frermann (l.frermann at ed.ac.uk). Partici-

pation in this research is voluntary. You have the right to withdraw from the experiment at any

time. The collected data will be used for research purposes only. Personal data will be kept

confidential and will not be shared with third parties.

Personal Details Questionnaire

Please fill in the Personal Details questionnaire correctly, as otherwise you will not receive

payment.

1. Age:

2. Gender:

3. Please specify the country where you have learned your first language:

Instructions

In this experiment, you will be presented with groups of words which refer to one common

topic. However, each group contains one word which does not belong to this topic. Your task

is to detect this “intruder word”. Please select the intruder based on the meaning of the word,

and not its part-of-speech or spelling. If you think multiple words do not belong to the group

please use your best judgment for selecting the best candidate. You must select one intruder

word for every group of words.

Examples

{apple banana car orange pear} The word “car” is the intruder word since it does not

belong to the general topic of fruit.

{keyboard screen yellow write lap-

top}

The word “yellow” is the intruder word since it does not

belong to the general topic of office equipment/work.

Please do not forget to accept the HIT before you start working on it.
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Additional Material on Experiment 5

C.1 Set of Target Concepts

The table below lists the set of target words used in Experiment 5, the study on dynamic feature

development in language acquisition (Section 6.3). Most concepts are basic-level categories

taken from the McRae concept set based on frequency of occurrence in the training corpus.

Exceptions are marked with an (*) and comprise superordinate-level categories, one abstract

noun, adjectives and verbs.

ID concept ID concept ID concept

1 animal* 11 color* 21 head

2 apple 12 dog 22 horse

3 bag 13 door 23 house

4 bed 14 eat* 24 nose

5 bedroom 15 fish 25 orange

6 blue* 16 food* 26 play*

7 box 17 green* 27 red*

8 car 18 hair 28 table

9 cat 19 hand 29 toy*

10 chair 20 hat 30 train
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C.2 Additional Model Output

We provide example SCAN representations in addition to the output discussed in Section 6.3.2

Time-specific meaning representations are visualized as a bar capturing the relative prevalence

(p(k|t) = φt
k) of different feature types (color-coded). One such visualization is displayed for

each temporal interval, illustrating the development of feature type prevalence over time. Each

interval covers ∆t = 3 months, and is labeled with the start date, i.e., age of the child. Each

feature type is illustrated to the right of the plot as the ten words w most highly associated with

the feature type, marginalizing over the time-specific representations
(

p(w|k) = ∑t ψ
t,k
w
)
.

The Full corpus. Example output of SCAN trained on the conflated input to 21 children for

the concepts head, fish, chair, dog and bag.

(a) Target concept head

0;11 1;02 1;05 1;08 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;08 4;11
age (year;months)

head bump bang over fall
 sit dear hurt play big 

head hat big wear over
 down hair arm fun take 

head  knee shoulder draw
 big nod toe watch arm 

head hurt bump watch round 
down turn dear back shake 

head back watch eye hat
 bang water potato teddy need 

(b) Target concept fish

0;11 1;02 1;05 1;08 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;11
age (year;months)

fish catch four big five
 alive net six elephant tank 

fish eat chip finger swim
 buy tea nice shop ooh 

fish eat big cat blue whale
 color penguin baby nice 

fish draw swim big water
 girl nice wow  huh 

fish call play rod game
 water big food car take 

(c) Target concept chair

0;11 1;02 1;05 1;08 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;08 4;11
age (year;months)

chair sit down move foot
 big back watch climb post 

sit chair down play table 
high breakfast need back 

sit chair rock behind baby 
table under need honey hide 

sit chair big down eat
 table under dear bear yellow 

chair sit table nice new
 stick bit down back under 
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(d) Target concept head

0;11 1;02 1;05 1;08 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;08 4;11
age (year;months)

dog food puppy eat clever
 cat boy orange many girl 

dog call baby sheep cow
 white color big pig sit 

dog woof big bark 
 read book ruff take red 

dog cat call sooty jump 
draw nice big pussy over 

dog eat cat house food
 bone call tail spot noise 

(e) Target concept bag

0;11 1;02 1;05 1;08 1;11 2;02 2;05 2;08 2;11 3;02 3;05 3;08 3;11 4;02 4;05 4;08 4;11
age (year;months)

bag party car tea give 
big remember need thing back 

bin bag man rubbish dust lorry
 back collect house today 

bag back take need  thing
 thank big box plastic 

bag shop toy carry full
 buy nice play many bit 

bag dear green plastic blue
 back carry bring white orange 

The Thomas corpus. Example output of SCAN trained on the Thomas corpus for the con-

cepts train, bag, fish and orange.

(a) Target concept train

2;00 2;03 2;06 2;09 3;00 3;03 3;06 3;09 4;00 4;03 4;06 4;09
age (year;months)

train play track set 
wooden back floor eat big bit 

train choo play hear poop 
set wait track back station 

train station track bridge
 runaway set down engine tell over 

train drive track nice carriage
 dear help sit call big 

train drive man bus set
 stop track noise need green 
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(b) Target concept bag

2;00 2;03 2;06 2;09 3;00 3;03 3;06 3;09 4;00 4;03 4;06 4;09
age (year;months)

bin bag lorry dust man watch
 big rubbish collect today 

bag back nice thank carry 
party shop thing sweet need 

bag tea big need take 
plastic back carry shop nana 

bag bin party white take
 morning back green thing big 

bag man dust rubbish bin
 week back house next toy 

(c) Target concept fish

2;00 2;03 2;06 2;09 3;00 3;03 3;06 3;09 4;00 4;03 4;06 4;09
age (year;months)

fish chip yellow sea swim
 talk eat buy shop blue 

catch fish five hook four
 six ooh rod alive try 

fish rod water call net 
catch basket down isabel take 

fish big catch tell nice
 tank net elephant eat purdie 

fish finger food deliver
 cat water lala eat net tuna 

(d) Target concept orange

2;00 2;03 2;06 2;09 3;00 3;03 3;06 3;09 4;00 4;03 4;06 4;09
age (year;months)

juice orange nice drink black
 big water bottle yellow straw 

orange chocolate apple juice man
 buy ball lemon thank banana 

yellow blue green orange color
 red pink purple cone round 

light green orange red work
 flash snake down keep tell 

juice orange strawberry nice drink
 marmalade milk actual mm carton 
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