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Abstract
Categories such as ANIMAL or FURNITURE play a pivotal role
in processing, organizing, and communicating world knowl-
edge. Many theories and computational models of categoriza-
tion exist, but evaluation has disproportionately focused on
artificially simplified learning problems (e.g., by assuming a
given set of relevant features or small data sets); and on English
native speakers. This paper presents a large-scale computa-
tional study of category and feature learning. We approximate
the learning environment with natural language text, and scale
previous work in three ways: We (1) model the full complex-
ity of the learning process, acquiring learning categories and
structured features jointly; (2) study the generalizability of cat-
egorization models to five diverse languages; and (3) learn cat-
egorizations comprising hundreds of concepts and thousands
of features. Our experiments show that meaningful representa-
tions emerge across languages. We further demonstrate a joint
model of category and feature acquisition produces more rele-
vant and coherent features than simpler models, suggesting it
as an exploratory tool to support cross-cultural categorization
studies.
Keywords: Categorization; Bayesian modeling; Computa-
tional cognitive modeling; Natural language

Introduction
Categories such as ANIMAL or FURNITURE are funda-
mental cognitive building blocks allowing humans to effi-
ciently represent and communicate the complex world around
them. Concepts (e.g., dog, table) are grouped into cat-
egories based on shared properties pertaining, for exam-
ple, to their appearance, behavior, or function.1 Cat-
egorization underlies other cognitive functions such as per-
ception (Schyns & Oliva, 1999; Goldstone, 2003) or lan-
guage (Waxman & Markov, 1998; Borovsky & Elman, 2006).
Research suggests that categories are not only shaped by the
world they represent, but also by the language through which
they are communicated (Gopnik & Meltzoff, 1987; Waxman
& Markow, 1995). Mental categories exist in every human
culture, however their manifestations differ (Malt, 1995; Ji,
Zhang, & Nisbett, 2004). The majority of human and compu-
tational studies of categorization to date has focused on En-
glish speakers (Medin, Unsworth, & Hirschfeld, 2007). We
investigate how computational models of categorization ex-
tend across languages, and present a data set, model and eval-
uation framework to this end.

Substantial research interest in categorization has resulted
in numerous theories (Nosofsky, 1988; Rosch, 1973; Corter

1We denote (superordinate level) CATEGORIES (ANIMAL or VE-
HICLE) in small caps; (basic level) concepts (cat or car) in italics,
and feature types (function or behavior) in true type.

Concept Natural Language Stimuli

cat
Les chats sont poilus.
Cats are carnivores.

猫有尾巴和爪子。
Die Katze miaut!

dog
الفراء. لديه الكلب
Hunde essen Fleisch.

Les chiens ont des queues.
Look, the dog is playing!

apple
I want to eat an apple.
苹果在树上生长。

Äpfel sind rot oder grün.
An apple contains seeds

kiwi
Can you cut me a kiwi?
بذور. لديها كيويس

Kiwis sind innen grün.
Ce kiwi est savoureux.

Figure 1: Illustration of model input for five languages for
two concepts from categories ANIMAL and FRUIT.

& Gluck, 1992; Murphy & Medin, 1985) which have been
thoroughly tested through laboratory experiments as well as
computational simulations. Empirical studies are predomi-
nantly based on small-scale laboratory experiments, where
participants are presented with small sets of often artificial
concepts with restricted features (Bornstein & Mash, 2010;
Medin & Schaffer, 1978; Kruschke, 1993). This contrasts
with category learning in the wild, where humans learn from
repeated, noisy observations, necessitating to disentangle rel-
evant features from irrelevant ones. Feature and category
learning mutually inform one another (Goldstone, Lippa, &
Shiffrin, 2001; Schyns & Rodet, 1997). There is also evi-
dence that features are themselves structured to represent the
diversity and complexity of the properties exhibited in the
world (Ahn, 1998; Spalding & Ross, 2000). This paper in-
vestigates the impact of a joint model of categories and their
structured features on the quality of representations.

Even though multilingual taxonomy induction has received
recent research attention (De Melo & Weikum, 2010), to
the best of out knowledge, we present the first large-scale
cross-lingual computational study of category and feature
learning with a cognitive focus. We compare two cog-
nitively motivated Bayesian models of varying complex-
ity and a word co-occurrence based model. We approxi-
mate the complexity of the learning environment with nat-
ural language, which has been shown to redundantly encode
much of the non-linguistic information in the natural environ-
ment (Riordan & Jones, 2011) and influence the emergence of
categories (Gopnik & Meltzoff, 1987; Waxman & Markow,
1995). Figure 1 illustrates the input to our models: Following
prior work (Fountain & Lapata, 2011; Frermann & Lapata,



2016), we create language-specific sets of stimuli, each con-
sisting of a mention of target concept (e.g., apple), within its
local linguistic context (e.g., {contains, seeds}). We consider
each stimulus an observation of the concept, i.e., the word re-
ferring to the concept is an instance of the concept itself, and
its context words are a representation of its features.

Our experiments expose all three models to (1) five diverse
languages2 and (2) rich and noisy natural language stimuli
covering hundreds of concepts and thousands of features (Ta-
ble 1). In sum, the contributions of this paper are:

• The first large-scale, multilingual study of categorization,
suggesting a potential of structured Bayesian models to in-
form cross-cultural categorization studies.

• Evidence that models which learn categories and struc-
tured features jointly, resembling human learning, acquire
better representations according to native speakers in all
languages.

• A multilingual dataset of categories, concepts and natural
language stimuli to support future computational catego-
rization studies across languages.3

Computational Framework
Computational models have been used successfully to shed
light on a wide variety of cognitive phenomena (Chater,
Oaksford, Hahn, & Heit, 2010) including language acquisi-
tion (Xu & Tenenbaum, 2007), generalization and reason-
ing (Griffiths & Tenenbaum, 2006), as well as categoriza-
tion (Anderson, 1991; Sanborn, Griffiths, & Navarro, 2006;
Shafto, Kemp, Mansinghka, & Tenenbaum, 2011; Frermann
& Lapata, 2016; Kruschke, 1993; Fountain & Lapata, 2011).
Here we use computational models to study (1) how cate-
gories and their structured representations emerge together
from a rich and noisy environment approximated by natu-
ral languages; and (2) their generalizability across languages.
Our five target differ in both typology and available corpus
size (Table 1), allowing us to study the robustness of mod-
els of differing complexity to small data. Our study includes
three models.

BCF is a Bayesian model of Categories and their
Features (Frermann & Lapata, 2015). Given a set of nat-
ural language stimuli of concept mentions in local context
(Figure 1), it learns categories k as groups of observed con-
cepts c, feature types g as clusters of observed features (con-
text words) f , and associations between categories and fea-
ture types. Feature types are clusters of features which per-
tain to distinct properties (e.g., behavior or function) and
are shared across categories. Figure 2 shows example repre-
sentations learnt by BCF from the English Wikipedia. More
formally, we can describe the model through its generative

2English, German (both Germanic), Arabic (Semitic), Mandarin
Chinese (Sinitic), French (Romance)

3The data set can be downloaded from
http://frermann.de/multiling categories/index.html.

story. We assume a global multinomial distribution over cat-
egories Mult(θ), drawn from a symmetric Dirichlet distribu-
tion with hyperparameter α (Dir(α)). For each category k, we
assume an independent set of multinomial parameters over
feature types µk, drawn from Dir(β), capturing the associa-
tions. For each concept type `, we draw a category k` from
Mult(θ). Finally, for each feature type g, we draw a multino-
mial distribution over features Mult(φg) from Dir(γ). Stim-
uli d are generated as follows: (1) retrieve the category kcd

of the observed concept cd ; (2) generate a feature type gd
from the category’s feature type distribution Mult(µkcd ); (3)
for each context position i, generate feature fd,i from the fea-
ture type’s distribution Mult(φgd ). As exact inference is in-
tractable, we employ collapsed Gibbs sampling as described
in (Frermann & Lapata, 2015).

BayesCat is a Bayesian categorization model (Frermann
& Lapata, 2016) similar to BCF, however it represents cat-
egories through unstructured bags-of-features. As such, the
model structure of BayesCat is closely related to topic mod-
els (Blei, Ng, & Jordan, 2003). BayesCat learns a global
category distribution Mult(θ) , and models each category k
as a distribution over concepts Mult(φk) and a separate distri-
bution over features (context words) Mult(ψk) each drawn
from a separate Dirichlet prior. Stimuli d are generated
by (1) drawing a category kd from Mult(θ); (2) drawing a
concept from Mult(φkd ); and (3) drawing features fi from
Mult(ψkd ). We derive a hard categorization from BayesCat’s
soft assignments of concepts to categories by assigning each
c to category k, s.th. argmaxk p(c|k). We construct feature
types g from BayesCat representations post-hoc, by first rep-
resenting each feature f as its probability under each cate-
gory p(k| f ), and clustering features into feature types g us-
ing k-means. We compute category-feature type associations
as p(g|k) = ∑ f∈g ψ

f
k . We use the collapsed Gibbs sampler of

Frermann and Lapata (2016) for inference.
Co-occurrence model We devise a word co-occurrence

based baseline to study the benefit of structured Bayesian
models over raw text. Each concept c is represented as a vec-
tor of co-occurrence counts with features f (context words),
capped by a minimum number of required observations, ap-
proximating the concept-feature association assoc(c, f ) =
N (c, f ). We obtained categories by clustering concepts
based on their vector representations using k-means. Based
on these categories, we obtained feature types by (1) collect-
ing all features associated with at least half the concepts in the
category; and (2) clustering these features into feature types
using k-means clustering.

Data
Our experiments focused on 491 basic-level concepts, taken
from two previous studies of concept representation (McRae,
Cree, Seidenberg, & McNorgan, 2005; Vinson & Vigliocco,
2008), for which our models learn (a) a categorization and
(b) structured feature representations. Human-created gold
standard categorizations of the concepts into 33 categories



k1 woodpecker hawk starling swan
chickadee finch buzzard goose stork pigeon

k2 eel perch minnow trout
cod catfish mackerel salmon

k3 coconut rhubarbcranberry peach
plum walnut lemon raisin grape prune

k4 strainer oven dishwasher blender ladle
pan stove colander grater kettle toaster

g1 nest egg male tree female
bird ground female prey water

g2 white brown dark color
yellow tail wing colour grey red

g4 century market industry sugar
factory farm mill product grow trade

g3 population habitat sea whale seal
water island bird river animal

g5 oil acid seed juice water product
vegetable fruit vitamin sugar

g6 cake milk cream sugar chocolate
bread cheese sweet flour eat

g7 system computer device user signal
frequency network radio software service

Figure 2: Examples of categories (red) and feature types (blue) inferred by BCF from the English Wikipedia. Connecting lines
indicate that an association between the category and respective feature type was induced by the model.

en ar zh fr ge
concepts 491 394 450 484 482
features 5,898 5,870 6,516 6,416 6,981
stimuli 418,755 86,908 147,386 258,499 233,175

Table 1: Datasets derived from Arabic (ar), Chinese (zh),
English, (en), French (fr), and German (ge) Wikipedia.

are publicly available (Vinson & Vigliocco, 2008; Fountain
& Lapata, 2010). Since the original studies were conducted
in English, we collected translations of the target concepts
and their categories into Arabic, Mandarin Chinese, French,
and German from native speakers. We note that the final
number of concepts featured in the language-specific corpora
(Table 1) differs across languages for a number of reasons.
First, some concepts get conflated as language differ in their
polisemies (e.g., french tongue has two meanings (1) the or-
gan tongue and (2) language) or conceptual granularity (e.g.,
everyday German does not distinguish between mandarins
and tangerins). Second, some concepts were culturally less
prevalent in some languages (e.g., bagpipes in Arabic) and
hence not covered sufficiently in the resprective Wikipedia so
that no input stimuli could be retrieved. Finally, some English
concepts are expressed as multiple tokens, most prominently
in Arabic (e.g., ambulance →

3/5/21 1

فاعسا	هرايس	 / literally:
ambulance car), and our data processing pipeline may have
missed some of these occurrences.

For each target language we created a corpus of input stim-
uli from articles from its respective Wikipedia dump;4 we
tokenized, POS-tagged and lemmatized the articles, and re-
moved stopwords. From this data set we derived a set of in-
put stimuli as target concept mentions in sentence context. In
order to obtain balanced data sets, we automatically filtered
words of low importance to a concept from contexts, using
the term-frequency-inverse-document-frequency (tf-idf) met-
ric. After filtering, we only kept stimuli with 3 ≤ n ≤ 20
context words and at most 1,000 stimuli per target concept.
Table 1 summarizes the statistics of the resulting data sets.

Experiments
Our experiments are designed to answer two questions: (1)
Do computational models of category learning induce mean-
ingful categorizations from rich and noisy data and across
languages? We answer this question by applying three text-

4http://linguatools.org/tools/corpora/wikipedia-monolingual-
corpora/

based categorization models to five diverse languages. We as-
sess category quality by evaluating induced categories against
a human-created reference categorization; and collect human
judgments of the feature quality from large crowds of native
speakers. (2) Does the capacity to learn structured features
jointly with categories lead to qualitatively better representa-
tions? We answer this question by comparing BCF against
BayesCat (a Bayesian cognitive categorization model with
unstructured features) and co-occ (which is based on word
co-occurrence). While all models retain a comparable cate-
gory quality, humans judged BCF representation to be more
coherent and relevant, and we present a qualitative analysis
to corroborate this.

Parameters BCF and BayesCat learn K=40 categories and
G=50 feature types. For both models we ran the Gibbs sam-
pler for 1,000 iterations, and reported the final most likely
representation. The co-occurrence model induces K=40 cat-
egories and G=5 feature types for each category. Reported
numbers are averages over 10 runs.

Experiment 1: Category Quality
We compare model-induced categories against human cre-
ated reference categorizations. We report purity (the extent
to which each learnt cluster corresponds to a single gold
class), collocation ( the extent to which all members of a gold
class are in a single learnt cluster) as well as their harmonic
mean (F1 measure). We include a random baseline for ref-
erence which randomly assigns concepts to categories (aver-
aged over 10 runs). Table 2 displays the results. BCF cate-
gories resemble the gold standard most closely, however, the
difference to BayesCat is small for most languages suggest-
ing that our joint category-feature model does not necessarily
lead to higher quality categories. The categories learnt by the
co-occ model are of lower quality across the board. Perfor-
mance drops for languages other than English which is likely
due to smaller stimuli sets (see Table 1).

Qualitative analysis. A few interesting idiosyncrasies
emerge from our cross-lingual experimental setup, and the
ambiguities inherent in language. For example, the English
concepts tongue and bookcase were translated into French
words langue and bibliothèque, respectively. The French
BCF model induced a category consisting of only these two
concepts with highly associated feature types {story, author,



en ge fr zh ar
BCF 0.552 / 0.432 / 0.484 0.454 / 0.400 / 0.425 0.534 / 0.441 / 0.483 0.441 / 0.349 / 0.389 0.408 / 0.327 / 0.363
BayesCat 0.551 / 0.429 / 0.482 0.458 / 0.378 / 0.414 0.507 / 0.415 / 0.457 0.430 / 0.320 / 0.367 0.394 / 0.298 / 0.339
co-occ 0.550 / 0.394 / 0.459 0.338 / 0.387 / 0.361 0.459 / 0.365 / 0.407 0.367 / 0.327 / 0.345 0.261 / 0.308 / 0.283
random 0.193 / 0.135 / 0.159 0.194 / 0.134 / 0.158 0.197 / 0.134 / 0.160 0.208 / 0.135 / 0.164 0.214 / 0.125 / 0.158

Table 2: Quality of induced categories in terms of purity / collocation / their harmonic mean (F1 measure) compared against
the human-created gold standard. Bold indicates the best performing model for each language.

saltwater soft naked marine family (target: clam)
BCF snail clam moth hare
Co-occ level snail otter whale

Figure 3: Illustration of the concept prediction task. Top left:
model input (features). Top right: target prediction (con-
cept). Bottom: top four predictions by BCF and co-occ.

en ge fr zh ar
BCF 34 (7) 31 (7) 31 (7) 37 (9) 49 (13)
BayesCat 31 (5) 32 (7) 28 (4) 38 (9) 54 (14)
co-occ 21 (1) 11 (0.7) 15 (2) 16 (3) 11 (1)

Table 3: Precision (%) at rank 10 (rank 1) over 300 test stim-
uli for BCF, BayesCat, and the co-occurrence model (co-occ).
The number of concepts per language differs, so absolute
numbers are not comparable across columns.

publish, work, novel} and {meaning, language, Latin, Ger-
man, form}. Although this category does not exist in the gold
standard, it arguably is a justifiable inference. Another exam-
ple concerns the concept barrel, which in the English BCF
output adopts its military sense and is grouped together with
concepts cannon, bayonet, bomb and features like {kill, fire,
attack}. Its French translation baril, however, refers to ves-
sels exclusively and is categorized with stove, oven and repre-
sented through features including {oil, production, ton, gas}.
Studying the interplay of language artefacts with conceptual
knowledge is an interesting avenue for future work.

Experiment 2: Feature Quality
In order to assess the quality of induced feature repre-
sentations, we confront each model with previously un-
seen stimuli d, and remove the concept. The mod-
els then rank all possible concepts ĉ based on the
given context features fd . Concept scores are computed
as s(ĉ|fd)=∑g P(g|ĉ)P(f|g) (BCF), s(ĉ|fd)=∑ f∈fd

N(ĉ, f )
(BayesCat), and s(ĉ|fd)=∑k P(ĉ|k)P(fd |k) (co-occ).

Figure 3 shows an English example stimulus, together with
model predictions from BCF and co-occ. Results are shown
in Table 3 as precision (%) at ranks 10 and 1 over a corpus
of 300 unseen test stimuli. We again observe similar perfor-
mance of BCF and the feature structure unaware BayesCat,
while the co-occurrence model performs worse. We conclude
that the joint and structured objective does not lead to fea-
ture representations that are more predictive for individual
concepts. We further note that BCF and BayesCat perform

comparatively across languages, while the performance of
co-occ degrades, suggesting that the Bayesian models lever-
age information more efficiently from smaller input corpora
(see Table 1). Considering the scarcity of categorization stud-
ies across diverse and potentially low-resource languages, ro-
bustness to small data sets is imperative.

Experiment 3: Human Judgments of Feature
Relevance and Coherence
We are finally interested in how meaningful the induced fea-
ture representations are to humans, i.e., to native speakers of
our five target languages. To this end, we elicited judgments
of feature quality from native speakers of our five target lan-
guages using crowd sourcing. We adopted the topic intru-
sion experimental paradigm (Chang, Gerrish, Wang, Boyd-
graber, & Blei, 2009) for assessing the induced features in
two ways. Firstly, we examined whether the induced feature
types are thematically coherent. Participants were presented
feature types (as lists of words), which were augmented with
a random ‘intruder’ feature (see Figure 4(a) left). The an-
notator was asked to identify the ‘intruder feature’. If the
feature types are internally coherent we expect annotators to
complete this task with high accuracy. For each model (BCF,
BayesCat and Co-occ), we evaluated all 50 induced feature
types.

Secondly, we assessed the relevance of feature types to
their associated categories. We presented participants with
a category and five feature types (each as a list of words), one
of which was randomly added and was not associated with
the category in the model output (see Figure 4(b) left). If a
model associates categories only with feature types that rele-
vant, annotators will be able to identify the intruder with high
accuracy. We evaluated 40 categories and their associated
features for all three models.

For each of our target languages, we recruited annotators
who self-identified as native speakers on crowd sourcing plat-
forms Figure8 and Amazon Mechanical Turk.5 We further
filtered crowd workers by their location of residence, as well
as by admitting only annotators with the highest platform-
specific qualification level for all languages, and finally only
admitted workers who correctly annotated a set of trial as-
signments. Each annotation task was completed by ten par-
ticipants.

5All experiments were conducted on Figure8, except for the
BayesCat evaluation for Chinese and French which was conducted
on Amazon Mechanical Turk due to a decrease in the worker pool at
the time of evaluation.



(a)

‘Select the intruder word.’
◦ ◦ ◦ ◦ • ◦

color green blue white milk red

◦ • ◦ ◦ ◦ ◦
cell violin study protein human disease

en ge fr zh ar
BCF 81 (0.71) 76 (0.64) 69 (0.53) 57 (0.72) 59 (0.44)
BayesCat 64 (0.53) 47 (0.34) 56 (0.41) 27 (0.23) 42 (0.42)
co-occ 27 (0.30) 22 (0.21) 22 (0.23) 23 (0.23) 24 (0.20)

(b)

‘Select intruder feature type (right) wrt category (left).’
wasp ant
caterpillar
hornet moth
housefly beetle
honeydew
grasshopper

◦ insect beetle family larva spider
◦ tree leaf plant nest grow
• guitar piano clarinet flute trumpet
◦ male female egg length cm
◦ white brown dark tail color
◦ population habitat bird forest water

en ge fr zh ar
BCF 75 (0.70) 53 (0.36) 56 (0.43) 47 (0.42) 39 (0.28)
BayesCat 61 (0.46) 37 (0.21) 47 (0.29) 26 (0.11) 39 (0.22)
co-occ 30 (0.23) 34 (0.20) 28 (0.22) 39 (0.31) 28 (0.16)

Table 4: (a): Feature coherence study. Two example tasks (left) and human performance as accuracy (%) and Inter-annotator
agreement (IAA; Fleiss Kappa) in brackets (right). (b): Feature relevance study. An example task (left; correct answer marked
with filled circle), and human accuracy (%) and IAA in brackets (right).

Figure 4(a) displays the results for the feature coherence
study (top) and Figure 4(b) shows the feature relevance re-
sults. Across both tasks BCF achieves best results by a large
margin both in terms of accuracy and annotator agreement.
We also observe a sharp drop in performance for languages
other than English, and suspect that the smaller pool of crowd
workers compounds the effect of a priori weaker represen-
tations (Tables 2,3). Overall, humans are able to detect in-
truder feature types more reliably in the context of BCF-
induced representations, suggesting that modelling category
acquisition jointly with structured feature induction leads to
more relevant and internally coherent feature types as judged
by native speakers. This result holds across all five lan-
guages, suggesting BCF as a valuable model for supporting
exploratory, multilingual analyses of category-feature associ-
ations.

Qualitative analysis. Figures 2 and 4 qualitatively con-
firm that BCF learns meaningful features across languages,6

which are overall coherent and relevant to their associated
category. Figure 2 illustrates how feature types associate
with different categories. For example g2 (color) is asso-
ciated with both FISH (k2) and BIRDS (k1) whereas bird
habitat-themed g1 is only associated with the latter; and
FISH (k2), FRUIT (k3) APPLIANCE (k4) are all associated
with agriculture/industry. Some interesting cultural dif-
ferences emerge. For example German is the only language
for which a measurement feature type is induced for VEG-
ETABLES (Figure 4a; de, 4th from left), while for CLOTH-
ING, a fashion industry feature emerges in French (Fig-
ure 4b; fr, 3rd from left). For the same category, a fea-
ture type pertaining to colour emerges for all five languages
(bold margins). In addition, some learnt features are en-
tirely language/culture-specific. For example, the 3rd feature
type for VEGETABLES in Chinese (Figure 4a) includes the
word 分 which refers to the extent to which food is cooked 7

6Model output of languages other than English was translated
into English by native speakers.

7Roughly equivalent to the English rare, medium, well-done, but
applicable to all kinds of food.

and 烂 which is the stage when food starts to fall apart after
cooking (stewing). In addition, the feature types induced for
the Chinese CLOTHING category include two words which
both translate to the English word wear, but in Chinese are
specific to wearing small items (e.g., jewelery;戴), and wear-
ing clothes (穿), respectively. Language-specific features are
meaningful, and at the same time category-features associa-
tions across languages reflect culture-driven differences.

Discussion
In this paper, we scaled computational cognitive studies of
category acquisition to (a) five diverse languages; (b) larger
concept and feature sets and noisier stimuli; and (c) the joint
process of category and feature learning and presented a
large-scale study of category and feature learning from nat-
ural language. Our results suggest that computational models
of categorization learn meaningful categories and their fea-
tures from rich and noisy data resembling the complexity of
the world more closely than controlled laboratory settings.
We also showed that BCF, a joint model of categories and
structured features, induces the most relevant and coherent
representations.

We conclude by discussing three avenues of future work.
First, all our models formalize category acquisition as a gen-
eral, language-independent process. They are unsupervised
and neither utilize language-specific knowledge nor require
custom parameter tuning. As such they pave the way for fu-
ture investigations involving more languages, different gen-
res and domains such as spoken language or fictional texts, or
diachronic studies of the fine-grained change of conceptual
representations drawing on historical data. Bayesian models
are data efficient and expected to generalize to small data and
low-resource languages.

Powerful language models (e.g., BERT; Devlin, Chang,
Lee, and Toutanova (2019)) pre-trained on large text cor-
pora in an unsupervised way, have been shown to encapsu-
late nuanced knowledge. While this work focused on cog-
nitively motivated and interpretable models, a study of the
extent to which powerful language models encapsulate con-
ceptual knowledge is an interesting direction for future work.



blumenkohl
zucchini limette
rettich gurke
zitrone pfeffer
brokkoli sellerie
zwiebel salat

cauliflower
zucchini lime

radish cucumber
lemon peppers
broccoli celery
onion lettuce

zwiebel salz fleisch
gemüse kartoffel

gericht zubereitung

onion salt meat
vegetable potato
meal preparation

rot geschmack
bilden blätter blüten
form sorte farbe
red taste form
leaves flowers

shape variety color

angebaut mais weizen
gemüse kartoffel anbau
bohnen getreide reis

grown corn wheat
vegetable potato crop-
ping beans grain rice

cm zentimeter
mm erreichen

durchmesser länge

cm centimeter
mm reach di-
ameter length

wort bedeuten
bezeichnung beze-
ichnen lateinisch

word mean
designation

designate latin

tomato garlic cauliflower zucchini
pepper cucumber lettuce radish cab-
bage parsley carrot onion eggplant

onion sauce vegetable
dish pepper meat

tomato potato garlic

crop potato vegetable
grow bean wheat
fruit tomato corn

oil acid seed juice water
product vegetable
fruit vitamin sugar

plant family leaf
grow flower flower-
ing root wild fruit

cake milk cream
sugar chocolate

bread cheese sweet

persil cornichon
concombre poivre
radi aubergine
chou-fleur cour-
gette carotte
haricot pois

parsley pickle
cucumber pep-
per radish egg-
plant cauliflow-
er zucchini car-
rots beans peas

huile viande sauce
tomate oignons base
pommes ail légume

oil meat sauce tomato
onions base apples
garlic vegetable

légume tomate
plantes haricot

pommes fruit carotte

vegetable tomato
plants beans ap-
ples fruit carrots

culture production
maïs agriculture

sucre agricole fruit

cultivation production
corn agriculture sugar

agricultural fruit

fruit vin jus couleur
orange arôme

pomme blanc goût

fruit wine juice
color orange flavor
apple white taste

viande porc boeuf
base poulet cuisine

spécialité plat

meat pork beef
base chicken cook-
ery specialty dish

李⼦ ⽣菜 泡菜
南⽠ 菜花 菠菜
茄⼦ 番茄 芹菜
柚⼦ 草莓 蛋糕

plum lettuce
pickles pumpkin

cauliflower spinach
eggplant tomato
celery grapefruit
strawberry cake

種 蔬菜 ⽔果 ⻝物 植物
包括 吃 成 蛋糕 ⻝⽤
kind vegetables fruits
food plants include
eat finish cake eat

要 成 與 時 為
隻 們 作 死 出

want finish and
time for only plu-
ral do die occur

歌曲 ⾳ 節⽬ ⾳樂 單
曲 歌 成 唱⽚ 推出

song sound program
music singles song
finish record launch

选中 轮 位 分 第 烂
中第 媒体 获得 评价
select round position
number medium
media get review

菜 吃 ⾁ 汤 加⼊
成 盐 包括 ⾯包 ⻥
dish eat meat soup

join finish salt
include bread fish

توت موظ شمندر
بصل بقدونس أزرق
شمام بسكويت ثوم
باذنجان العسل كوز

beetroot moose
blackberry parsley

onion garlic
biscuit honey-
melon eggplant

زَيْت مِثْل لحَْم نَوْع لحَْم
رُزّ طَعام خُبْز عادَة هِنْد
meat kind meat

like oil India habit
bread food rice

مِنْطَقَة هِنْد زَيْتُون شَجَرَة
مِثْل فاكِهَة شَجَرَة نَوْع زِراعَة

tree olive India
area agriculture
type tree fruit like

ماء نِصْف ماء صَغِير مِلْعَقَة
وَضَع ة مُدَّ كبَِير شَرِب

spoon small water
half water drank

large duration placed

حَياة ة قِصَّ عاش والِد نَفْس
ة مَرَّ رَجُل ٱِسْم سَبَب صَدِيق

spirit father lived
story life friend rea-
son name man once

ل وَّ أَ رِوايَة فِيلْم فِيلْم
ة قِصَّ جائِزَة ٱِسْم دَوْر
film film novel
first role name
award story

en
de

fr
ch

ar

(a) Category CLOTHING

krawatte gesicht
olive halstuch

mantel nachthemd
bluse puppe hemd
pelz jacke robe

kleid kappe schal

tie face olive
scarf coat
nightgown

blouse doll shirt
fur jacket robe
gown cap scarf

schwarz rot hose
hemd lang frauen

kleidung rock weiße

black red pants
shirt long women
clothing skirt white

frau lassen se-
hen haus nehmen

fahren bringen vater

woman leave see
house take drive

bring father

film sehen erscheinen
geschichte bild lassen
nennen buch frau „die

movie see appear
story image leave call
book woman ”the

schwarz gefärbt hell
weeißen braun kehle
kopf rot gelb grau

black colored bright
white brown throat
head red yellow gray

lassen bringen
nehmen könig frau
töten ziehen fangen

leave bring take
king woman
kill pull catch

blouse slipper jacket shawl dress
vest swimsuit jean nightgown
cloak skirt hat gown leotard

woman dress white
shirt skirt hat jacket
clothing style red

white blue shirt uni-
form red green school

color dress dark

video scene music
show woman girl

dance stage sit dress

kill king power life
woman god magic
steal lose transform

kill home house car
woman door room
mother family steal

chemise-de-nuit
jupe pantalon

pantoufle maillot-
de-bain chapeau
écharpe robe-
du-soir cravate

nightgown skirt
pants slipper
swimsuit
hat scarf

nightgown tie

bleu noir pantalon
blanc blanche noire
couleur chemise

blue black pants
white white

black color shirt

protection protéger
vêtement chaussure
gant cuir main sac

protection protect
garment shoe glove
leather hand bag

produit marque fab-
rication entreprise

vêtement objet société

product brand con-
struction business

clothing object society

femme jeun mettre
scène découvrir

passer maison fille
woman young

putting scene find
pass home girl

tête cheveu visage
femme forme long
oreille nez noir

head hair face
woman shape long
ear nose black

靴 睡⾐ ⼿套 鞋
⼤⾐ ⼿ 短裙 背
⼼ 袍 胸罩 帽
⼦ ⽿罩 凳⼦ 拖
鞋 披肩 娃娃 帽

boot pajama glove
shoe coat hand skirt
vest gown bra hat

earmuff stool slipper
shawl doll hat

穿著 戴 穿 ⽩⾊ ⿊⾊
⿊⾊ 帽⼦ ⼥性 ⾊ 會
wearing wear wear
white black black

hat female color will

穿 戴 穿着 服装 ⽩
⾊ 会 ⼥性 ⿊⾊

wear wear wearing
clothing white

will female black

作品 電影 故事 部 ⻆
⾊ 作 系列 主⻆ 動畫
works movies stories
roles work series

protagonist animation

系統 種 功能 包括 設
計 作 ⽅式 出 會 成

system kind function
include design work
way occur will finish

要 成 與 時 為
隻 們 作 死 出

want finish and
time for only

plural do die occur

عنق ربطة بدلة جزمة
خوذة ذرة حبوب

العجلات ثلاثية دراجة
معصم بيجامة ذقن
قميص قبعة فأس

النوم ثوب رداء حذاء

shoe suit necktie
corn helmet
tricycle chin

pajama wrist ax
hat shirt boot
robe nightgown

لوَْن حْمَر أَ بْيَض أَ لوَْن ٱِرْتَدَى
سْوَد أَ سَد أَ قَمِيص زْرَق أَ طَوِيل

wore color white
red color long blue
shirt lion black

حَياة ة قِصَّ عاش والِد نَفْس
ة مَرَّ رَجُل ٱِسْم سَبَب صَدِيق

spirit father lived
story life friend rea-
son name man once

حَمَل ٱِرْتَدَى شَكلْ رَأْس يَد
لٰه إِ طَوِيل سَيْف صُورَة رَجُل
hand head shape
wore carried man

portrait sword long god

ل وَّ أَ مُباراة القدم كرة قَدَم
دَرَجَة عالمَ ٱِتِّحاد فَرِيق

foot football match
first team union
world degree

رَسُول راوَنْد ٱِبْن االلهَّ
سَلَّم صَلَّى نَبِيّ

god son rhubarb
messenger prophet
prayed saluted

en
de

fr
ch

ar

(b) Category VEGETABLES

Figure 4: Categories VEGETABLE (a) and CLOTING (b) (light red), and their five most highly associated feature types (light
blue) for English (en), German (de), French (fr), Arabic (ar), and Chinese (ch). Model output of languages other than English
was translated into English by native speakers.

Combining the strengths of both, e.g., by exposing BCF-like
models to pre-trained word embeddings rather than raw text
is also conceivable if target language resources permit.

Finally, even though our results corroborate prior
work (Riordan & Jones, 2011) that the non-linguistic sur-
rounding is to some extent encoded in language, Wikipedia
is arguably a crude approximation of the environment which
categories represent. We envision scalable testbeds which

combine naturally occurring data from multiple modalities,
for example combining text data with images or video. We
demonstrated the potential of large naturalistic datasets for
the development and testing of computational models, and are
confident that computational cognitive models together with
large naturally occurring data set will open up novel opportu-
nities for investigating human cognition at scale.
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