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“Cognition is Categorization”(Harnad, 2005)

The ability to generalize from experience

I underlying a variety of common mental tasks,
such as learning, perception or language use

Learning categories

Is a glove a piece of clothing?

Learning features

Do all pieces of clothing have
stripes?
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”Well-clothed baby” by Andrew Vargas from Clovis, United States
- Cropped from http://www.flickr.com/photos/45665234@N00/2136501005. Licensed under CC BY 2.0 via Wikimedia Commons
- http://commons.wikimedia.org/wiki/File:Well-clothed baby.jpg#/media/File:Well-clothed baby.jpg
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Concepts, Categories and Features

learning categories ↔ learning features
(Schyns and Rodet, 1997; Goldstone et al., 2001)

Category Features

• wool

• leather

• is dotted

• has color

• keeps warm

• keeps dry

• is fashionable
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Features and Feature Types

Features are structured
(McRae et al., 2005; Spalding and Ross, 2000)

Category Features

• wool

• leather

• is dotted

• has color

• keeps warm

• keeps dry

• is fashionable

The feature type distribution varies across categories.
(Ahn, 1998)
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Contributions

(I) the first joint model of category and feature acquisition

I principled formulation in the Bayesian framework

I knowledge-lean

I large-scale modeling and evaluation
→ learning from textual input

(II) a way of quantitatively evaluating the learnt features

I avoiding direct comparison with human-produced feature sets
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Related Work

Related models

• text-based category acquisition
(Fountain and Lapata, 2011; Frermann and Lapata, 2014)

• highly engineered feature extraction from text
(Baroni et al., 2010; Kelly et al., 2014)

• small-scale experiments (Anderson, 1991; Sanborn et al., 2006)

• artificial stimuli

Feature evaluation

• comparison of text-based features to human-produced
feature sets (problematic)
(Baroni et al., 2010; Kelly et al., 2014)
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Learning Objectives

1. accurate semantic categories

2. coherent feature types

3. relevant category-feature type associations

bouquet scarf slipper coat
hat veil hair cape glove cap fur...

buzzard penguin toad emu duck
bird pheasant chickadee crocodile...

· · ·

white black color
brown dark spot red

hair colour yellow
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Input

Textual input (documents) from text corpora

I one target concept

I sentence context as features

... a skirt is a tube- or cone-shaped garment ...

... a skirt covers all or part of the legs ...
... skirts are more commonly worn by women ...

Proxy of the cognitive learning environment

examples adapted from https://en.wikipedia.org/wiki/Skirt.
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Model Overview

Assumptions / Modeling Decisions

I one category k per concept type
(hard clustering of concepts into categories)

I one feature type g per input
(soft clustering of features into feature types)

I feature types capture one particular aspect of meaning

I categories differ in their feature type associations
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Generative Story

gc f

k` θ αµkcβ

φ γ

I
D

LK

G

distribution over categories θ ∼ Dir(α)
for concept type ` do

category k` ∼ Mult(θ)

for category k do
feat type distribution µk ∼ Dir(β)

for feature type g do
feature distribution φg ∼ Dir(γ)

Draw distribution over categories θ ∼ Dir(α)

for input d do

Observe concept cd and retrieve category kcd

Generate feature type gd ∼ Mult(µkcd )

for context position i = {1..I} do

draw context word fd,i ∼ Mult(φgd )
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Learning with Blocked Gibbs Sampling

1. For each input: re-sample feature type
I fix the current concept categorization
I establish meaningful feature types

∝ p(featuretype = i |category(concept), ...) ×
p(features|featuretype = i , ...)

2. For each concept: re-sample category
I fix the current feature types
I group concepts with similar feature type associations

into the same category

∝ p(category(concept) = j |...) ×
p(featuretypes(concept)|category(concept) = j , ...)
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Evaluation: Overview

Models

I Strudel – pattern-based feature extraction from text
(Baroni et al., 2010)

I BayesCat – a Bayesian model of category acquisition
(Frermann and Lapata, 2014)

I BCF – this work ; “Bayesian Categories and Features”
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Evaluation: Overview

Models

I Strudel – pattern-based feature extraction from text
(Baroni et al., 2010)

I BayesCat – a Bayesian model of category acquisition
(Frermann and Lapata, 2014)

I BCF – this work ; “Bayesian Categories and Features”

Questions

1. How meaningful are the learnt categories?

2. How predictive are the features?

3. How internally coherent are the learnt feature types?

4. How meaningful are the category-feature type associations?
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How meaningful are the learnt categories?

Homogeneity Completeness V-measure
0.5

0.55

0.6

0.65

0.7

0.75
BCF

BayesCat
Strudel

I Strudel is highly optimized, categories formed post-hoc

I BCF performance competitive with Strudel’s
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How predictive are the features?

Given the context (features) of an unseen document:
predict its target concept

Unseen input document

salmon journey move hundred mile strong current

reproduce

Model Predictions

BCF salmon tuna goldfish lobster fish
BayesCat fish radio goldfish salmon clock
Strudel train house apartment ship car
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How predictive are the features?

Given the context (features) of an unseen document:
predict its target concept

Pr@1 Pr@10 Pr@20

0.1

0.2

0.3

0.4

0.5

0.6
BCF
BayesCat
Strudel

I patterns may be too restrictive, feature set too constrained
(high precision, low recall)
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How coherent are the learnt feature types?

Text-elicited feature types are not compatible with human
elicited ones (Baroni et al., 2010; Kelly et al., 2014)

We evaluate feature types directly through crowdsourcing
(AMT)

Topic Intrusion Paradigm (Chang et al., 2009)

I given a list of topic words, spot the inserted ’intruder word’

I easy if topics are coherent
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How coherent are the learnt feature types?

“Select the intruder word.”

◦ ◦ • ◦ ◦ ◦
egg female box young bird food
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0.2

0.4

0.6

0.8
BCF
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How coherent are the learnt feature types?

Example Output for category clothing

Strudel

white change pant
trouser replace

paint fasten thick
layer apply

hole shirt lie
neck finish

pattern hood cover
crimson woolen

man occasion see
steal striped

BCF

wear cover veil
woman coat

white black color
brown dark

eye tooth ear
skin lip

wear suit trouser
woman garment

animal feather skin
wool material
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Conclusion

Summary

I the first model for joint learning of categories and features
I principled formulation in one unified framework
I competitive results compared with an engineered, pipelined

feature extraction system
I feature evaluation method that sidesteps comparison to

human produced features

In the future

I multimodal learning
I incremental learning (e.g. particle filtering)
I dynamic models: tracking meaning change over time

Thank you!
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How meaningful are the feature types?

“Select intruder feature type (right) wrt category (left).”

ant hornet

butterfly moth

flea beetle

grasshopper

wasp caterpillar

cockroach

◦ egg female food young bird

◦ ant insect butterfly wasp larva

• wear cover veil woman coat

◦ body air fish blood muscle

◦ sound human nerve bird brain

◦ culture symbol popular feature animal
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How meaningful are the feature types?

Precision Kappa
0.2

0.3

0.4

0.5

BCF
Strudel

I Strudel slightly better (differences not statistically significant)

I simpler BCF model learns qualitatively comparable features
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