A Bayesian Model of Joint Category and Feature Learning

Lea Frermann
| frermann@ed.ac.uk

Institute for Language, Cognition, and Computation, School of Informatics, University of Edinburgh

“Cognition is categorization” Incremental inference: particle filtering

The ability to generalize from experience Sequential Monte Carlo

» incrementally approximate a target distribution through a
sequence of intermediate distributions

underlying a variety of common mental tasks,
such as learning, perception or language use

» represent each distribution through a set of weighted samples
(particles)

» recursively update each particle with information from novel
observations

Learning categories of concepts
Is a scarf a piece of clothing?
Learning structured types of features

Do all pieces of clothing have color? or material? _ L _
» approximate memory limitations: # of particles, or allowed

Learning incrementally capacity for re-consideration of past decisions

Immediately utilizing novel insights and information » known issues: sample degeneracy and sample impoverishment
Large(r)-scale training and testing

Approximating the learning environment with text A particle filter for the BCF model
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Data — The CHILDES corpus

» speech from child-parent interaction
» we take child-directed speech only
» 21 English-speaking children

» age between Oyllm and 4yllm

» extract mentions of concepts in context
age utterance

1:05 bed brush brush bed brush teeth tooth
2;00 sleep tired book bed bed sit fall

2;00 eat apple red apple mmm nice first
2:07 apple cut quarter apple seed pip core

Procedure
» bucket data into 3-month intervals
» present them in chronological order to the model
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